
RSSAC028 Implementation study
report

Consortium:
NLnet Labs
Stichting Internet Domeinregistratie Nederland (SIDN)

Authors: Willem Toorop (NLnet Labs), Yorgos Thessalonikefs (NLnet Labs),
Benno Overeinder (NLnet Labs), Moritz Müller (SIDN), Marco Davids (SIDN).

Last modified: September 21, 2023

Table of Contents
Introduction 3

Naming schemes from RSSAC028 5
The Current Naming Scheme: 5.1 5
The Current Naming Scheme, with DNSSEC: 5.2 5
In-zone NS Names: 5.3 5
Shared Delegated TLD: 5.4 6
Names Delegated to Each Operator: 5.5 6
Single Shared Label for All Operators: 5.6 6

Survey of Root Server Operators 7
Survey results 7

Resolver testbed 10
Design 10

Virtual machines and operating systems 10
DNS software used 11
Virtual networking 11
Zone files for the naming schemes from RSSAC028 13
Orchestration 15
Simulating the proprietary authoritative name server software 15

Installation 16
Running the testbed 17

I.) Setup and Configuration 17
II.) Running the test queries and capturing traffic 18
III.) Processing the packet captures 19

Main Analysis 22
Acceptable response sizes 22

Support of response sizes according to Internet standards 22
Support of response sizes according to measurements in the wild 22
Summary 24

Reproducing RSSAC028 Appendix A results 25
Priming responses from all root server software 25

Most prevalent query parameters 25
Group I 27
Group II 29
Group III 29
Group IV 30
Group V 31
Group VI 31
Group VII 32
Group VIII 32

RSSAC028 Implementation study report 1

Priming responses properties 33
Testbed results 35

Naming Scheme 5.4 and Knot Resolver 37
Missing additional addresses of Group I and II name servers 38
Failed priming 39
Influence on UDP/TCP traffic 41

Avoiding TCP with naming scheme 5.3.1 41
Increase in TCP traffic 41

Failure scenarios 42
Unable to validate 42
Unable to send queries via TCP 43

Properties of resolvers 44
Impact of search lists on different naming schemes 46

Discussion and Conclusion 47
Observation per naming scheme 49

Acknowledgement 51
Appendix A: RSO Survey 52
Appendix B: Reproducing RSSAC028 Appendix A 54

Reproduced RSSAC028 Appendix A results 54
BIND 9.10.3-P4 54
NSD 4.1.13 54
Knot DNS 2.2.1 55
Knot DNS 2.3.0 55

Results for recent versions of BIND, NSD and Knot DNS 55
BIND 9.18.13 55
NSD 4.6.1 56
Knot DNS 3.2.5 56

Appendix C: Naming schemes cheat sheet 57

RSSAC028 Implementation study report 2

Introduction
The Root Server System Advisory Committee (RSSAC) conducted a comprehensive technical
analysis of the naming scheme utilized for individual root servers, which has been published as
RSSAC0281. The objective was to offer guidance to the Internet Corporation for Assigned
Names and Numbers (ICANN) Board of Directors and the Internet community more broadly
regarding the operation, administration, security, and integrity of the Internet's root server
system.

The current naming scheme was initially introduced in 1995 (see RSSAC023v22) and has
proven to be effective over the years. However, as part of its tasks to perform ongoing threat
assessment and risk analysis of the root server system and to recommend any necessary audit
activity to assess the current status of root servers and the root zone, the RSSAC undertook a
thorough analysis of the naming scheme and carefully evaluated the consequences of
implementing modifications.

RSSAC028 provides an extensive documentation of various alternative naming schemes for the
root zone and associated root servers, including the existing naming scheme. Each scheme,
ranging from the current naming scheme, the signed root-servers.net zone, in-zone NS names,
shared delegated TLD, names delegated to each operator, to a single shared label for all
operators, is elaborated upon in sections 5.1 to 5.6 of the RSSAC028 report. Furthermore,
anticipated advantages and drawbacks are outlined for each scheme, accompanied by a
comprehensive risk analysis.

The key recommendation stemming from RSSAC028 is that no immediate changes should be
made to the current naming scheme until further studies have been conducted. Any
modifications to the existing naming scheme should be based on the outcomes of these
additional investigations.

This report seeks to address parts of the questions raised in RSSAC028. Its primary focus lies
on the operational behavior of widely used open source DNS resolver software in relation to
each naming scheme and root server deployment proposed in RSSAC028. Specifically, this
report studies:

- The acceptable response size for priming queries
- The impact of naming schemes on priming responses
- The impact of missing glue records on recursive resolver implementations
- The impact of DNSSEC validation on signed priming responses
- The impact of search lists on different naming scheme

2 RSSAC. 2020. “RSSAC023v2: History of the Root Server System”.
https://www.icann.org/en/system/files/files/rssac-023-17jun20-en.pdf

1 Kumari, Warren, Joe Abley, John Bond, Brian Dickson, Paul Hoffman, Suresh Krishnaswamy,
and Matt Larson. 2017. “RSSAC028-Technical Analysis of the Naming Scheme Used For
Individual Root Servers.”, https://www.icann.org/en/system/files/files/rssac-028-03aug17-en.pdf

RSSAC028 Implementation study report 3

https://www.icann.org/en/system/files/files/rssac-023-17jun20-en.pdf
https://www.icann.org/en/system/files/files/rssac-028-03aug17-en.pdf

The findings presented herein are the result of testbed simulations for each naming scheme and
a literature study. With the help from input from the Root Server Operators (RSO), we created a
testbed that represents the current configurations of the root server system. Furthermore, the
testbed consists of a variety of recursive resolver software. By presenting the findings of the
testbed simulations and their implications, this report aims to facilitate informed discussions and
decision-making within the DNS community.

The remainder of this document is structured as follows: First, we reintroduce the naming
schemes from RSSAC028. Then, we discuss the questionnaire shared with the RSOs and list
their responses. We take their responses as an input for configuring our testbed and the
components and design choices are described in Resolver testbed. We use the testbed to
simulate the impact of the naming schemes on priming and describe the results of this analysis
in Main Analysis. We discuss our results in Discussion and Conclusion. The appendices
Appendix A: RSO Survey and Appendix B: Reproducing RSSAC028 Appendix A contain
additional information about the survey and the testbed.

RSSAC028 Implementation study report 4

Naming schemes from RSSAC028
This section contains an overview of the naming schemes introduced in section 5 of
RSSAC028. In this document, the individual schemes are referenced by the section number in
RSSAC028 in which that scheme (5.1 to 5.6) is described. A short description for each scheme
is taken from the section in RSSAC028 which introduces the scheme.

The Current Naming Scheme: 5.1

Figure 1: The current naming scheme

The authoritative servers for the root zone have the names ‘[a-m].root-servers.net’. The
‘root-servers.net’ zone is served by name servers that also serve the root zone. In this scheme,
the ‘root-servers.net’ zone continues to be unsigned.

The Current Naming Scheme, with DNSSEC: 5.2
This is the same as the preceding scheme, but with ‘root-servers.net’ being signed by the zone’s
maintainer.

In-zone NS Names: 5.3

Figure 2: In-zone NS names

The root zone will have an NS RRset consisting of in-zone names with the A and AAAA records
of the root servers. In our report 5.3 uses ‘[a-m].root-servers’ as the name for the root servers.
We also use a variant, 5.3.1, that uses a single letter ‘[a-m]’ for the root servers.

RSSAC028 Implementation study report 5

Shared Delegated TLD: 5.4

Figure 3: Shared delegated TLD

The root zone will have an NS RRset that consists of 13 domain names that share a new
common delegated TLD (for example, the names ‘a.root-servers’, ‘b.root-servers’, and so on).
There will be 13 records in the root zone’s NS RRset pointing to the root server name server
instances. The new shared TLD will be delegated to the same set of nameservers.

Names Delegated to Each Operator: 5.5

Figure 4: Names delegated to each operator

A new domain will be delegated to each root server operator. The root zone will have an NS
RRset consisting of server names that are managed by the corresponding root server operators.
The names for this proposal can either have all records under a common label (for example, the
names ‘a.root-servers’, ‘b.root-servers’, and so on) or can be short labels in the root zone (for
example, the names ‘a’, ‘b’, and so on which in our study is referred to as scheme 5.5.1.). No
other delegations are involved.

Single Shared Label for All Operators: 5.6

Figure 5: Single shared label for all operators

Instead of having individual names for each root server, the set of root servers could be given
one name at the top level (such as ‘all-root-servers.’) and that one name has the 13 IPv4
addresses and 13 IPv6 addresses of the root servers as two RRsets. We also use a variant,
5.6.1, that uses ‘root-servers’ as the TLD.

RSSAC028 Implementation study report 6

Survey of Root Server Operators
In order to test the naming schemes in a (realistic) simulation of the current root server system,
we reached out to RSOs to identify authoritative server software, their configuration and other
relevant parameters.We reached out to the RSO’s via email, and asked the following questions
(see Appendix A for the full e-mail):

● Question 1: What authoritative name server software are you using to serve the root
zone or are you planning to use in the near future? Which version of the software do you
use and on which platform? If different software is used in parallel or as a backup,
please include them as well.

● Question 2: Is the name server software compiled with custom compile-time options
and/or configuration for compilation? If so, are you able and willing to provide those
options and/or configuration?

● Question 3: If the software used is open source, would you be willing to provide us with
the configuration files? If yes, please attach the configuration files to this response.

● Question 4: If the software is proprietary, would you willing to share it with us or provide
us with an installation we can use to perform our tests?

● Question 5: Do you have public facing load balancers or other infrastructure you
consider important for this study?

● Question 6: Are there any other parameters of your name server setup relevant to this
study? For example, do your name servers support DNS cookies? Which path MTU(s)
do you have configured? Have you enabled minimal responses or similar functions?

Survey results
All RSO’s answered our survey. Table 1 and Table 2 summarize the answers from the RSO’s.
The operators of the root letters A, B, F, I, J and M requested us not to publish all or some of
their answers. Other operators provided only a limited set of answers. If provided and permitted,
Table 1 lists the configurations deployed by RSO’s at the time of answering the survey. Table 2
lists the configurations that RSO’s plan to deploy in the future.

From the survey results that were indicated to be confidential, two proprietary authoritative
name server software were reported. The providers of that software agreed to perform tests
locally in their own testbeds and reported the results back to us. The tests consisted of zone
files for each naming scheme and a test script. From the provided results, we recreated
authoritative server replies that resemble the output of the RSO’s as closely as possible. See
Simulating the proprietary authoritative name server software for more details.

RSSAC028 Implementation study report 7

In the case of incomplete OS information we opted for the current latest version of the given
version branch or Debian bullseye if the information was missing or only ‘Linux’ was mentioned.
For RedHat derivatives we opted for Centos8 stream. In the case of an incomplete name server
software version we opted for the current latest version of the given version branch. These
choices are depicted with ‘→’ in Table 1 and Table 2:
Letters Operating System Software Version Compile options Other parameters

A and J Confidential

B Confidential

C CentOS 7 BIND 9.16
→9.16.39

./configure --enable-dnstap
--with-maxminddb --with-json-c
--with-libidn2
--libdir=%{_prefix}/lib64

MTU: 1500

D →Debian bullseye NSD 4.1.20 --enable-root-server
--enable-bind8-stats
--enable-zone-stats
--enable-ratelimit-default-is-off

EDNS: 1450

E FreeBSD
→FreeBSD13.x

BIND 9.16.x
→9.16.39

DNS Cookies: Yes
MTU: 1480

F FreeBSD 12.x and 13.x BIND 9.16.x
→9.16.39

DNS Cookies: Partially
Software config:
keep-response-order { any; };

Confidential

G →Debian bullseye BIND 9.16.29-S1

H Linux
→Debian bullseye

NSD 4.5.0 --enable-root-server
--enable-ipv6
--with-user=domain
--enable-bind8-stats
--with-pidfile=/etc/nsd/run/nsd.pid
--enable-ratelimit
--with-tcp-timeout=15
CFLAGS="-O2 -ffast-math
-fomit-frame-pointer -fpeel-loops
-fstack-protector-all
-mtune=core2
-fPIE”
LDFLAGS="-pie
-Wl,-z,relro,-z,now"

MTU: 1500
MSS on loadbalancer: 1220
(for IPv6)

I Confidential

K RedHat Linux
derivative
→Centos8 stream

BIND 9.16.x
→9.16.39

DNS Cookies: No
Minimal responses: yes
MTU: 1500

Knot
DNS

3.1.x
→3.1.9

NSD 4.x.x
→4.6.1

--enable-root-server

RSSAC028 Implementation study report 8

Letters Operating System Software Version Compile options Other parameters

L Ubuntu 18.04 Knot
DNS

3.1.8 EDNS: 4096

NSD 4.6.0

M Confidential

Table 1: Summary of answers to the RSO survey. This table contains information about software
configured at the time of the survey.

Letters Operating System Software Version Compile options Other parameters

C AlmaLinux 9 Not mentioned,
assume the same configuration

Not mentioned, assume the same configuration

H Linux
→Debian bullseye

NSD Regularly upgrade to
recent NSD versions
→4.6.1

Not mentioned, assume the same configuration

K RedHat Linux
derivative
→Centos8 stream

BIND 9.18.x
→9.18.13

Not mentioned, assume the same configuration

Knot
DNS

3.2.x
→3.2.6

Table 2: Summary of answers to the RSO survey. This table contains information about software
that RSO’s plan to deploy in the future.

In the remainder of the document we refer to the specific authoritative nameserver by { Letter,
Operating System and Software } combination as follows: C Alma BIND 9.16.39, C CentOS
BIND 9.16.39, D Linux NSD 4.1.20, D Linux NSD 4.6.1, E FreeBSD BIND 9.16.39, F FreeBSD
BIND 9.16.39, F FreeBSD BIND 9.16.39, G Linux BIND 9.16.29, H Linux NSD 4.5.0, K CentOS
BIND 9.16.39, K CentOS BIND 9.18.13, K Knot 3.1.9, K Knot 3.2.6, K NSD 4.6.1, L Ubuntu Knot
3.1.8 and L Ubuntu NSD 4.6.0.

The five root server operators that request not to publish some or all of their software resulted in
nine unique { Letter, OS, Software } combinations which we will refer to as X1 (conf), X2 (conf),
X3 (conf), X4 (conf), X5 (conf), X6 (conf), X7 (conf), X8 (conf) and X9 (conf)

RSSAC028 Implementation study report 9

Resolver testbed
The testbed used for this report is based on a resolver-testbed developed and sponsored by
ICANN. Our additional work that updates and automates the original resolver-testbed has been
contributed back and is now available in ICANN’s github repository for the testbed:
https://github.com/icann/resolver-testbed .

Complete documentation is provided in the code repository. Details relevant to this report are
presented below.

Design
The original testbed used VirtualBox to contain the virtual machines (VMs) and virtual networks.
It used manual steps for the setup and python scripts for provisioning and running the tests.

The current testbed still uses VirtualBox as the core virtualisation environment for VMs and
virtual networking as it allows for a variety of host and guest operating systems. It is additionally
complemented by Vagrant and Ansible for automated setup, provisioning and idempotency.
These allow for trivial installations, easy reproducibility and provide guarantees about the state
of the environment after several (re)configurations while testing the different naming schemes.

The current testbed also allows for local/hidden configuration. Local configuration files can be
defined to augment already defined VMs and/or introduce new ones. The testbed is equipped to
deal with such information that is not part of the public repository. This is crucial for this study as
a number of root server operators have indicated that the operational information shared with
the consortium is confidential.

The local configuration files that describe the root operators’ setup are not part of the code
repository and are only accessible by the consortium members.

Virtual machines and operating systems
The main virtual machines used in the testbed are the following:

gateway-vm. As the name suggests it functions as a gateway for both resolver and name
server VMs also interconnecting their two distinct networks. It is thus the appropriate place for
packet captures during measurements. There are no special requirements for the operating
system so Debian bullseye was chosen.

servers-vm. A VM on the servers network used to host name server software. For this study, it
is only used to serve the 'net.' zone (where appropriate based on naming scheme) and the
check domains 'example.' and 'example2.'. The operating system chosen for this VM is
FreeBSD 12.x. FreeBSD was already the choice of the original testbed and was kept for the
convenience of firewall configuration.

RSSAC028 Implementation study report 10

https://github.com/icann/resolver-testbed

resolvers-vm. A VM on the resolvers network used to host resolver software. For this study, it is
used as the main host of all the tested resolver software. There are no special requirements for
the operating system so debian bullseye was chosen.

root-servers. This is an Ansible group of VMs consisting of distinct VMs on selected OSes,
hosting source compiled name server software that matches the root servers' operational
environment as closely as possible. As with servers-vm, it resides on the servers network.

DNS software used
For the source compiled name servers on the root-servers VMs we refer the reader to the
survey results from WP1. Additionally, a package from ports, BIND 9.16.40 was used on
servers-vm to serve the 'net.' zone and the check domains 'example.' and 'example2.'. Apart
from facilitating the study, this name server's behavior is not relevant for the measurements.

For the resolver software the following resolvers and their versions were source compiled on
resolvers-vm:

For BIND, versions 9.9.11, 9.10.8, 9.11.6, 9.12.4, 9.13.7, 9.14.10, 9.15.8, 9.16.41, 9.18.15 and
9.19.13. All versions are EOL except for 9.16.41 and 9.18.15 which are the current-stable, and
version 9.19.13 which is the development one.

For Knot Resolver, versions 5.5.3 (5.5.0 released in March 2022) and 5.6.0 (released in
January 2023).

For PowerDNS Recursor, versions 4.0.9, 4.1.15, 4.2.1, 4.7.5 and 4.8.4. All versions are EOL
except for 4.7.5 (4.7.0 released in May 2022) and 4.8.4 (4.8.0 released in December 2022).

For Unbound, versions 1.5.10, 1.6.8, 1.7.3, 1.8.3, 1.9.6, 1.13.0, 1.14.0 and 1.17.1. All versions
are EOL except for the latest one, 1.17.1 released in January 2023.

The old versions already available from the original testbed were kept since resolver software is
often part of routers and middleboxes, machines once deployed and often forgotten. They can
also reveal differences (if any) between old versions and the currently supported versions.

Virtual networking
The following distinct virtual networks were used in the environment:

Control NAT (10.0.2.0/24). This is the default NAT network in VirtualBox. It is used (and
configured in the Vagrant boxes) by Vagrant to control and provision the VMs. It is configured as
the first interface of every VM and is used for the default IPv4 route (if not configured otherwise)
allowing access to the Internet. Vagrant also uses this interface to port forward the VMs local
port 22 to a localhost port on the host for ssh access to the VM.

RSSAC028 Implementation study report 11

Servers network (172.21.0.0/16, fd00::21:0:0/96). This is the network where servers-vm and
every VM in the root-servers group is connected to. One of the interfaces of gateway-vm is also
connected to this network.

Resolvers network (172.20.0.0/24, fd00::20:0:0/96). This is the network where resolvers-vm is
connected to. One of the interfaces of gateway-vm is also connected to this network.

The network is as described in the figure below.

Figure 6: Testbed network layout

The network cards for each VM are the following:

● gateway-vm
○ gc for control NAT
○ gr on the resolvers network (172.20.0.1/24, fd00::20:0:1/96)
○ gs on the servers network (172.21.0.1/16, fd00::21:0:1/96)

● servers-vm
○ sc for control NAT
○ ss on the servers network (172.21.0.2/16, fd00::21:0:2/96)

● resolvers-vm
○ rc for control NAT
○ rr on the resolvers network (172.20.0.2/24, fd00::20:0:2/96)

● root-servers:
○ sc for control NAT
○ ss on the servers network (172.21.x.yz/16, fd00::21:x:yz/96)

RSSAC028 Implementation study report 12

The letters on the above root-servers addresses have the following IP numbering scheme:

● x encodes the root letter
● y encodes the OS
● z encodes the name server software, 0 reserved for the system itself

For example, 172.21.2.22 is the IPv4 address of the second OS and the second nameserver
software for the B-root server.

There is an additional IP numbering scheme for resolver software on resolvers-vm. It is used for
both outgoing traffic as well as for listening to queries in the resolver software configurations and
helps identify each resolver in the packet captures. The scheme is 172.20.0.r and fd00::20:0:r
where r > 2 and is encoded as:

● 3 ≤ r < 20, available range for Unbound resolver software
● 23 ≤ r < 40, available range for BIND resolver software
● 43 ≤ r < 60, available range for PowerDNS Recursor software
● 63 ≤ r < 80, available range for Knot Resolver software

This topology allows for all the relevant to the study inter-routing to flow through the
gateway-vm, making it the ideal target for packet captures. resolvers-vm is further configured to
have the default route via gateway-vm, thus capturing possible traffic that was not anticipated.

nftables load balancer (nftlb) is installed on the gateway-vm to further orchestrate the traffic. It is
configured for Destination Network Address Translation (DNAT) from resolvers to name servers
and, if needed, configured to target specific OSes and name server software based on the
naming scheme and setup under test.

One caveat of the testbed is that outgoing traffic from the virtual setup is only possible via the
control NAT network. This is IPv4 only by default. Outgoing traffic is used for packages and
source code installation. All the relevant traffic for the measurements stays confined in the
virtual topology. As such, no further measures were taken to enable IPv6 for outgoing traffic.

Zone files for the naming schemes from RSSAC028
Generation of the zone files for the different naming schemes to be deployed on the root servers
is automated via a Makefile. The Makefile uses syntax specific to the GNU implementation of
make. The generated root and root servers zone files are based on a version of the root zone
and the ‘root-servers.net’ zone that were downloaded from https://www.internic.net/domain/ .
Naming schemes 5.1 and 5.2 include an alternative version of the ‘.net’ zone (to facilitate
alternative ‘root-servers.net.’ zones) which is also generated by the Makefile. Finally two check
domains are generated for performing test queries without leaving the testbed environment:
‘example.’ and ‘example2.’

The TTL values for the SOA, the NS, the delegation NS and the DS RRsets in the generated
root, the root servers and ‘.net’ zones, are based on the values currently in use by those zones

RSSAC028 Implementation study report 13

https://www.internic.net/domain/

on the Internet. Also the DNSSEC algorithms and key sizes are based on what is currently in
use by those zones on the Internet. All those parameters are defined at the start of the Makefile
and can be altered.

All generated zones are signed by ldns-signzone with inception date January 1, 2023 and
expiration date January 1, 2033. Keys are generated on request with ldns-keygen. In case
zones have the same name (such as with the different versions of the root zone), the same key
is reused. The generated key for the root zones is also used to configure the trust-anchor for the
resolver software on the resolvers-vm.

All downloads, generated DNSSEC keys and intermediary files are stored in the repository for
reproducibility and also to be able to change only certain aspects of the generated zone files.

Figure 7: Zone files and their responsible servers

For all name schemes, the zone file for the root is provisioned on all the root servers. Naming
schemes 5.1, 5.2 and 5.4 have a specific zone for the root servers, which are also provisioned
on all the root servers. With naming schemes 5.5 and 5.5.1, each root server has its own zone,
which are accordingly provisioned. Naming schemes 5.1 and 5.2 have an alternative version of
‘.net’ which is provisioned on servers-vm. The two check domains to receive and answer the
test query: ‘example.’ and ‘example2.’ are provisioned on servers-vm.

The IP addresses assigned to the individual root servers in the zone files are different from the
addresses currently in use by the root servers on the internet. This allows us to determine
whether a resolver succeeds priming. When priming succeeds, the resolver learns the new IP
addresses from the priming response and will eventually target the different (new) IP addresses
to reach the root.

Note that the nftables load balancer (nftlb) on gateway-vm directs both the IP addresses as they
are currently used for the root servers on the internet, as well as the different (new) IP
addresses to the appropriate { Letter, OS, Software }. The different IP addresses are not taken
from the Special-Purpose Address registries, because many resolvers are protected to not
target special purpose addresses as well as link and/or site local addresses.

RSSAC028 Implementation study report 14

The zone files are prefixed with the version number of the naming scheme (as defined in
Naming schemes from RSSAC028) followed by a dash. For example 5.4-root is the file name
used for the root zone for naming scheme 5.4.

For all naming schemes 5.1 to 5.6.1 root hints files are generated as well. The root hints do
contain the IP addresses for the root servers as they are currently used on the internet.

Orchestration
Ansible playbooks are used extensively to orchestrate the virtual environment. After the initial
network/system provisioning where the interfaces are set up and all required software is
installed, different playbooks are used for provisioning before, during and after each
measurement.

Simulating the proprietary authoritative name server software
Two proprietary authoritative softwares were reported in (confidential) survey results. We
arranged with the providers of those software to perform tests locally in their own testbeds and
report the results back to us. We used these results to recreate the behavior of the proprietary
software in the testbed as close as possible.

The tests consisted of (for each naming scheme) a series of DiG queries targeted at a testbed
instance of the software loaded with the zone files for the naming scheme. The parameters for
the test queries are based on the analysis of what we have observed from resolvers in our
testbed.

noedns : dig @<ipv4> +norec +ignore +noedns . NS

noedns : dig @<ipv6> +norec +ignore +noedns . NS

16384 DO : dig @<ipv4> +norec +ignore +bufsize=16384 +cookie . NS

16384 DO : dig @<ipv6> +norec +ignore +bufsize=16384 +cookie . NS

16384 DO : dig @<ipv4> +norec +ignore +bufsize=16384 +cookie +dnssec . NS

16384 DO : dig @<ipv6> +norec +ignore +bufsize=16384 +cookie +dnssec . NS

With one of the proprietary name servers, the responses never contained signatures for address
records in the additional section and the largest response was lower than 1232 bytes. From this
we deduced that TCP replies could always contain the full response. With the other proprietary
name server, responses did contain signatures for address records in the additional section and
the largest responses (for schemes 5.3 and 5.6) had a reduced set with the truncated (TC) flag
set. We asked the provider to perform additional queries over TCP in order to simulate those
responses too:

TCP DO : dig @<ipv4> +norec +bufsize=16384 +tcp +cookie . NS

TCP DO : dig @<ipv4> +norec +bufsize=16384 +tcp +cookie +dnssec . NS

RSSAC028 Implementation study report 15

The ldns software3 contains a tool to return crafted DNS messages in response to certain
queries: ldns-testns. The tool reads a data file containing a series of entries with match
directives followed by a detailed description of a reply, including what elements to take from the
query such as query ID, query name and/or type.

ldns-testns has been extended to be able to match queries with a certain EDNS UDP Message
size, as well as to be able to answer delegations. These changes are in the current develop
branch of the ldns repository. ldns-testns has also been extended to listen on addresses
configured in the data file. That last change allows us to treat ldns-testns as another name
server software in the testbed, with the data file as configuration file. We considered that last
change too specific to be included in mainline ldns. It is available in the rssac028 branch4.

The ldns-testns data files for the two proprietary name server softwares are based on

1. the responses returned from the software providers,
2. the query parameters that were chosen to allow us to deduce the properties of the

responses for other parameters (see Priming responses from all root server software for
and description of how these were chosen),

3. the queries we perceived coming from the resolvers to root servers in our testbed,
4. live responses perceived on the Internet for delegations and for direct DS, DNSKEY, A

and AAAA responses. For example when queried directly for an address of a root letter,
one of the proprietary name servers adds addresses of the other root servers to the
additional section.

Installation
The testbed can be installed on a host running VirtualBox, Vagrant and Ansible. It has been
tested on both Linux and FreeBSD hosts and the current measurements were carried out on a
FreeBSD 12.3 host.

The steps to install the environment include:

1. Installation of the VMs. This is accomplished through Vagrant by grabbing defined
Vagrant boxes and importing them to VirtualBox. Linked VM clones are used in this step
that drastically reduce the import overhead (time and space) of VMs that share the same
box (OS). Ansible is defined as the default provisioner for the VMs and Vagrant exports
all the necessary connection information in an Ansible compatible format to be used by
further Ansible invocations.

2. Initial network/system provisioning. This step is accomplished with Ansible playbooks
that setup and configure the network interfaces and compile (if necessary) and install the
required software and services.

For more details on the environment we refer the reader to the repository of the testbed.

4 https://github.com/NLnetLabs/ldns/tree/rssac028
3 https://nlnetlabs.nl/projects/ldns/about/

RSSAC028 Implementation study report 16

https://github.com/NLnetLabs/resolver-testbed
https://github.com/NLnetLabs/ldns/tree/rssac028
https://nlnetlabs.nl/projects/ldns/about/

Running the testbed
A testbed run is accomplished via Ansible playbooks, and scripts invoking Ansible playbooks.
Collecting results for a set of configuration parameters consists of 13 steps performed in three
stages: I.) Setup and configuration of the testbed, II.) Running the test queries and capturing
traffic, and III.) Processing the packet captures, which we’ll address individually in the following
sections.

I.) Setup and Configuration
The following parameters can be configured:

a. naming scheme : All name server software (all { Letter, OS, Software }
combinations and servers-vm) is configured to load the zone
files for the selected naming scheme to analyze.

b. root server IP addresses : The zone files to be loaded for the naming scheme contain
either IP addresses for the root servers as currently used on
the internet, or alternative IP addresses. The latter allows to
determine whether priming succeeds, in which case the new
(alternative) IP addresses are targeted after priming.

The testbed results presented in this report all used
alternative root server IP addresses in the zone files.

c. DNAT & load balancer : Root server IP addresses (the ones used on the Internet as
well as the alternative ones) are destination NATted (and
load-balanced) to either the { OS, software } combinations for
the associated letter, or are all targeted to a single { Letter,
OS, Software } instance. The latter allows us to study more
directly the effect of that combination on resolvers.

d. root hints : The resolver software on resolvers-vm can be equipped with
root hints (or not which means the resolver uses the build-in
hints conforming with naming scheme 5.1). The IP addresses
in the hints file can either be the ones as currently used on
the Internet or alternative IP addresses.

The testbed results presented in this report all used root
server IP addresses as currently used on the Internet in the
hints.

e. current time : The time on the resolvers-vm can be configured to be outside
the period that DNSSEC signatures are valid.

f. TCP ability : TCP access to the name servers can be blocked on
resolvers-vm.

RSSAC028 Implementation study report 17

The testbed is setup and configured with these parameters in three steps:

1. All authoritative name server software in the root-servers group as well as the
authoritative name server software on servers-vm, is configured to load the zone files
based on the a.) naming scheme and b.) root server IP addresses parameters.

The testbed results presented in this report all used alternative root server IP addresses
in the zone files.

The configured name server software is subsequently started and ready to answer
queries.

2. Based on the value of the c.) DNAT & load balancer parameter, the nftables load
balancer (nftlb) on gateway-vm is configured to either:

- load balance all root server IP addresses for a letter to the { OS, Software }
associated with that letter, or

- let all root server IP addresses end up at a single { Letter, OS, Software } instance.

3. On resolvers-vm:

- The time is set to the current time, or a time outside of the validity period of the
DNSSEC signatures in the zone files based on the e.) current time parameter.

- Outgoing TCP traffic targeted at the name servers (the root-servers and servers-vm)
is blocked (or not) with iptables based on the f.) TCP ability parameter.

- All resolver software is configured with a root hints (or not) based on the value of the
d.) root hints parameter.

The testbed results presented in this report all used root server IP addresses as
currently used on the Internet in the hints files. (see Zone files for the naming
schemes from RSSAC028).

The resolver software is not started after configuring.

II.) Running the test queries and capturing traffic
After setup and configuration, the following steps are performed (by an ansible playbook) to
measure resolver behavior under the configured parameters:

4. Start tcpdump on gateway-vm listening on all interfaces and capturing all UDP and TCP
traffic to port 53, writing the capture to disk.

5. Start all resolver software on resolvers-vm.

6. Wait (5 seconds) to allow capturing of possible (priming) traffic automatically initiated by
resolvers.

RSSAC028 Implementation study report 18

7. Query all the resolver software on the for that software designated IPv4 address from
gateway-vm for the first test with query name 'example.' and query type A.

Querying from gateway-vm makes the test queries show up in the packet captures which
is useful in analysis to pinpoint the moment a resolver was queried in relation to the
queries from the resolver.

8. Wait (5 seconds) after resolution to allow capturing of possible ongoing traffic from
resolvers after replying to the client.

9. Query all the resolver software from gateway-vm for the second test with query name
'example2.' and query type AAAA to see if the success/failure of priming during the initial
query has a different effect now.

10. Wait (5 seconds) after resolution to allow capturing of possible ongoing traffic from
resolvers after replying to the client.

11. Stop and collect the tcpdump packet capture on gateway-vm.

III.) Processing the packet captures
The captured network traffic is processed for further analysis with two steps:

12. In the captures each resolver software can be identified by IP address. For each capture,
first the queries and responses are extracted per resolver software. Then the DNS
messages from and to that resolver software are parsed and converted into textual
representation of the message on a single line displaying:

- The resolver software,
- A relative timestamp in seconds starting from the first packet seen with that resolver
- The IP version, the transport used and the direction of the message
- The target or source of the message,
- The query name and query type,
- Between parentheses, for queries:

i. the EDNS UDP Message size, and whether the DO flag is set,
and for responses:

ii. The size of the returned message,
iii. Whether or not the TC flag is set (i.e. the message was truncated),
iv. The number of RRs in the answer section / the number of RRsigs,
v. The number of RRs in the authority section / the number of RRsigs,

vi. The number of RRs in the additional section / the number of RRsigs,
vii. The EDNS UDP Message size, and whether the DO flag is set.

The test queries from and to the resolver are sent from gateway-vm and can be
identified by IP address as well. They appear in the textual representation as
resolvers-vm for target or source.

RSSAC028 Implementation study report 19

Below is an example result of this processing for bind-9.12.4 for naming scheme 5.1
(with alternative IP addresses for the root servers), with nftlb configured to load-balance
the IP address of each letter over the authoritative software in use by that letter.

bind-9.12.4 0.000000 --4-> @resolvers-vm example. A (udp=4096)

bind-9.12.4 0.001737 --6-> @a example. A (udp=512,DO)

bind-9.12.4 0.001904 --6-> @a . NS (udp=512,DO)

bind-9.12.4 0.002290 <--6- @a . NS (sz=28,TC,udp=1232,DO)

bind-9.12.4 0.003173 -T6-> @a . NS (udp=4096,DO)

bind-9.12.4 0.003315 <-T6- @a . NS (sz=1097,an=13/1,ar=26,udp=4096,DO)

bind-9.12.4 0.003583 <--6- @a example. A (sz=432,ns=2/1,ar=2,udp=4096,DO)

bind-9.12.4 0.004027 --6-> @servers-vm example. A (udp=512,DO)

bind-9.12.4 0.004542 <--6- @servers-vm example. A (sz=279,an=1/1,udp=1232,DO)

bind-9.12.4 0.005688 <--4- @resolvers-vm example. A (sz=80,an=1,udp=4096)

bind-9.12.4 5.300018 --4-> @resolvers-vm example2. AAAA (udp=4096)

bind-9.12.4 5.300815 --6-> @New-K example2. AAAA (udp=512,DO)

bind-9.12.4 5.301407 <--6- @New-K example2. AAAA (sz=440,ns=2/1,ar=2,udp=1232,DO)

bind-9.12.4 5.301842 --6-> @servers-vm example2. AAAA (udp=4096,DO)

bind-9.12.4 5.302224 <--6- @servers-vm example2. AAAA (sz=517,an=1/1,ns=1/1,udp=1232,DO)

bind-9.12.4 5.302596 <--4- @resolvers-vm example2. AAAA (sz=93,an=1,udp=4096)

In this log we can see that bind-9.12 upon reception of the first test query, contacts a root
server (letter A) at the old IPv6 address for that query, from which it learns the delegation
at 0.003583. The priming query is sent only after the test query. The priming response is
truncated (because it doesn’t fit within the requested 512 bytes UDP Message size),
which triggers a requery over TCP. The second test query is sent to the alternative IP
address (for letter K), from which we can conclude that priming succeeded.

13. Those results are then further processed to extract metrics, such as:

- The moment of priming:
i. immediately after startup,
ii. after receiving the test query, but before starting work on the test query,
iii. after starting work on the test query.

- Whether or not priming succeeded
- Whether or not the test queries resolved
- The number of priming queries (qname: . , qtype: NS) sent to the root servers
- The number of follow up address queries (A and AAAA) sent to the root servers
- Transport used
- Size of the responses

RSSAC028 Implementation study report 20

A “test run” of the testbed consists of a series of the above described 13 steps in three stages
for collecting testbed results, iterating the a.) naming scheme parameter over all naming
schemes described in Naming schemes from RSSAC028. The metrics resulting from a “test run”
are then further organized in tables for visual inspection and analysis.

There are two kinds of test runs. In one, the c.) DNAT & load balancer parameter in the testbed
is configured so that the IP addresses for each letter end up (load balanced) at the root server
for that letter. All other parameters remain the same. These kinds of test runs reflect how
resolvers would behave in the root server system as currently deployed on the internet and
result in a table of metrics for naming schemes (as columns) by resolvers (as rows).

The other kind of “test run” is intended to analyze the behavior of resolver software in relation to
the responses from each { Letter, OS, Software } combination. To do that, the c.) DNAT & load
balancer parameter is configured to direct all root server IP addresses to a specific { Letter, OS,
Software }; Then for each naming scheme, all the three stages are furthermore performed
iterating over each unique { Letter, OS, Software } combination.

The second kind of test run results in metrics
organized in a cube with three axes: Naming
Schemes, Resolvers and { Letter, OS, Software }
combinations. From this cube we extract three kind
of tables for visual inspection and analysis:

1. { Letter, OS, Software } by Resolver
- per Scheme

2. Scheme by { Letter, OS, Software }
- per Resolver

3. Scheme by Resolver
- per { Letter, OS, Software }

Figure 8: Organisation of measurement results

In Testbed results the kind of table is indicated alongside the presented metric tables.

To highlight the differences in the metrics displayed in the tables, equal rows and columns are
collated. For the { Letter, OS, Software } combinations equal metrics often relate to groups of
combinations that have equal properties for priming responses. Those groups are identified in
Priming responses from all root server software.

RSSAC028 Implementation study report 21

Main Analysis

Acceptable response sizes
In this section, we carry out a literature study with the goal to identify the typical maximum
supported packet size on the Internet. The DNS community discussed packet size support
extensively around the DNS Flag Day in 20205. The DNS Flag Day 2020 recommended resolver
and authoritative name server operators a maximum safe message size of 1232 bytes and
required the support of the TCP fall-back mechanism.

The DNS Flag Day 2020 focussed on the communication between recursive resolvers and
authoritative name servers. However, for this study, the supported packet size of validating stub
resolvers is relevant as well. For this reason, we also include studies that measure packet size
support between the stub resolver and the recursive resolver.

Also, DNS messages transmitted via TCP have the potential to transport larger messages than
DNS messages transmitted via UDP. We include studies on DNS over TCP support as well.

Note, that the studies that we discuss here rely on different measurement methodologies and
vantage points. For this reason they report varying supported message sizes and TCP support.

In general, we analyze studies that were published around 2020 and later.

Support of response sizes according to Internet standards
Originally, DNS messages over UDP were limited to 512 bytes. The EDNS(0) extension headers
increased the maximum message size theoretically to 64 KB. However, the MTU ​​most
commonly found in the core of the Internet is around 1500 bytes. If messages exceed this size,
the responding server can signal to the requesting resolver to fall back to TCP.

Support of response sizes according to measurements in the wild
Signaled supported message size: With EDNS(0), receivers of DNS responses can signal the
largest possible DNS message they can receive via UDP. The DNS Flag Day 2020 recommends
a supported buffer size of at least 1232 bytes.

In October 2020, Moura et al. have shown that 4.4% of resolvers announce an EDNS(0) buffer
size of 1232 bytes to the authoritative name servers of the .nl ccTLD. 40% of resolvers in this
study announce a size of 4069 bytes6. Six months later, a study by Fukuda et al. reported that

6 Moura, Giovane C., Moritz Müller, Marco Davids, Maarten Wullink, and Cristian Hesselman.
2021. “Fragmentation, truncation, and timeouts: are large DNS messages falling to bits?”

5 DNS OARC. 2020. “DNS flag day: 2020.” http://www.dnsflagday.net/2020/.

RSSAC028 Implementation study report 22

20% of observed resolvers announce a buffer of 1232 bytes to the authoritative name servers of
the .jp ccTLD7.

Huston et al. used an advertisement network to measure how many users rely on resolvers that
comply with the Flag Day recommendations8. By December 2020, 5% of users rely on resolvers
that announce a buffer size of 1232 bytes. 7% rely on resolvers that announce 1400 bytes and
80% of users rely on resolvers that announce a buffer size of 4096 bytes.

Additionally, they observed that some resolvers alter their behavior when resolving name server
names, and thus might also do so when querying the root name servers. In some 30% of cases
the EDNS(0) buffer size is either dropped from the query, or dropped below 1452 octets.

Kosek et al. used RIPE Atlas probes to study the announced buffer size of recursive resolvers
towards their clients9. Here, 30% of probes relied on resolvers that announce a buffer size of
1232 bytes. 28% relied on resolvers announcing 4096 bytes.

Actually supported message size: An announced EDNS(0) buffer size does not necessarily
mean that messages of this size can be reliably transported. In 2017, Huston employed
measurements using an advertising network to test the transport of larger DNS messages
between recursive resolvers and authoritative name servers on IPv610. He reported a 5.01%
drop rate for DNS messages of 1428 bytes and a 7.1% drop rate for DNS messages of 1,886
bytes.

Koolhaas et al. used RIPE Atlas probes for a similar study11. They reported a failure rate of
0.93% for a message size of 1260 bytes and below in IPv4, which raises to a failure rate of
1.56% with a message size of 1400 bytes. For resolvers that rely on IPv6, drop rates stayed
below 1% until a message size of 1460 byte. Message sizes of 1492 bytes caused drop rates of
around 1.3%.

11 Koolhaas, Axel, and Tjeerd Slokker. 2020. “Defragmenting DNS: Determining the optimal
maximum UDP response size for DNS.”

10 Huston, Geoff. 2017. “Dealing with IPv6 fragmentation in the DNS.” APNIC Blog.
https://blog.apnic.net/2017/08/22/dealing-ipv6-fragmentation-dns/.

9 Kosek, Mike, Trinh V. Doan, Simon Huber, and Vaibhav Bajpai. 2022. “Measuring DNS over
TCP in the era of increasing DNS response sizes: a view from the edge.” ACM SIGCOMM
Computer Communication Review 52, no. 2.

8 Huston, Geoff, and Joao L. Damas. 2021. “Measuring DNS Flag Day 2020.” OARC 34.

7 Kensuke, Kensuke, Yoshitaka Aharen, Shinta Sato, and Takeshi Mitamura. 2022.
“Characterizing DNS query response sizes through active and passive measurements.” NOMS
2022-2022 IEEE/IFIP Network Operations and Management Symposium.

Passive and Active Measurement: 22nd International Conference, PAM 2021, 2021.
https://link.springer.com/chapter/10.1007/978-3-030-72582-2_27.

RSSAC028 Implementation study report 23

In 2021, Huston et al. repeated and extended their study to also include resolvers that rely on
IPv4. Overall, they concluded that “[t]here is a slight increase in drop rates above 512 octets to
around 0.5%” but “no visible change in drop rates in payloads up to 1500 octets in size”.

Koolhaas et al. also studied the drop rates between stub and recursive resolver. Here, the drop
rate via IPv4 stays below 2% as long as messages do not exceed 1448 bytes. For IPv6
connections, the drop rate stays below 2% with messages smaller/equal 1280 byte. Messages
larger than that, but smaller than 1460 bytes have a failure rate of below 7%.

TCP support: When a message does not fit in the announced buffer, the server should signal to
the client to retry the query via TCP.

In 2017, Huston reported a drop rate of 2.67% for messages of size 1428 bytes. When forcing
resolvers to rely on TCP only, this drop rate grew to 5.01%. 1.97% of resolvers were unable to
even transmit 169 byte small messages. This indicates that a small percentage of measured
resolvers were unable to fall back to TCP. In their study four years later, they report a failure rate
of DNS over TCP of between 1% and 2% across all transactions and message sizes.

In 2022, Mao et al. measured DNS over TCP support of public DNS resolvers12. In order to
understand whether these open resolvers are actively used, they used traffic traces of the
authoritative name servers of major CDN to analyze how much DNS traffic these open resolvers
were responsible for. They found that 2.7% to 4.8% of open resolvers were not able to fall back
to TCP. These resolvers were responsible for 2.7% to 4.8% of all queries at the CDN.

In the same year, Kosek et al. relied on RIPE Atlas probes to study DNS over TCP support
directly at the probes and at larger public DNS providers. Support of DNS over TCP at RIPE
Atlas probes was poor, where only 25% were able to send queries over TCP reliably. In
contrast, DNS over TCP support at public DNS services was overall on par with DNS over UDP
support, with a few exceptions. Additionally, they also measured the performance of DNS over
TCP and concluded that DNS over TCP to public DNS resolvers is 40% slower compared to
DNS over UDP.

Summary
The maximum supported message size depends on whether messages are transported via
UDP or TCP. Also the underlying IP version has an impact. Across the discussed studies, drop
rates for messages smaller or equal than 1480 bytes stayed below 2%. Messages above this
size are transported less reliably. This has likely to do with issues with TCP support, with failure
rates between 1% and 5%. Failure rates for larger DNS messages and for DNS messages via
TCP are worse when looking at the communication channel between stub and recursive
resolver.

12 Mao, Jiarun, Michael Rabinovich, and Kyle Schomp. 2022. “Assessing Support for
DNS-over-TCP in the Wild.” Passive and Active Measurement: 23rd International Conference
PAM 2022.

RSSAC028 Implementation study report 24

Reproducing RSSAC028 Appendix A results
As a baseline measurement for the “acceptable response sizes for priming queries” study goal,
we have measured priming response sizes for the RSSAC028 naming schemes, with the
authoritative software that was also used to create the table in Appendix A of the RSSAC028
report. This involved installation of older versions of BIND, NSD and Knot-DNS name servers.
Reproduced sizes can be found in Appendix B.1, as well as the sizes for the recent versions of
the tested software (BIND, NSD and Knot-DNS).

The results of the older versions match those of RSSAC028, except for scheme 5.3 IPv4
DNSSEC with NSD which is 13 bytes smaller than in the report. The responses from the recent
versions no longer produce large responses. All versions of BIND, NSD and Knot-DNS,
released after October 1st 2020 comply with the recommendations of DNS Flag Day 2020 and
have the EDNS buffer size configured default to 1232.

Priming responses from all root server software
To better understand resolver behavior in response to priming responses, we have looked at
attributes of those responses for all the current and future root server software; that is all current
and future { Letter, OS, Software } combinations. We observed several properties that priming
responses may or may not have coming from the different software for the different schemes:

1. The number of IPv4 and IPv6 address records in the additional section,
2. The number of signatures in the packet in the answer and the additional section,
3. Whether or not the TC (truncate) flag is set in the response.

These properties vary in response to parameters of the priming query:

1. The transport used for the query,
2. Whether or not the query uses EDNS,
3. The maximum UDP Message size advertised in EDNS,
4. Whether or not the query had the DO flag set requesting DNSSEC resource records.

Most prevalent query parameters
We inventoried the most prevalent parameters for queries to the root from the DNS-OARC Day
In The Life of the Internet (DITL) collection effort13. At the time of writing, packet captures from
all A, D, F, G, H and J root letter anycast nodes were available. The captures were taken on 28
and 29 March 2023 and contained 84,796,581,713 queries. Table 3 shows the most prevalent
(Top-6) query parameters.

13 https://www.dns-oarc.net/ditl/2011

RSSAC028 Implementation study report 25

Percentage of queries EDNS UDP
message size

DO flag set

28.08% 4096 ✔

25.27% 1232 ✔

10.92% No EDNS
5.13% 512 ✔

4.10% 4096
3.55% TCP ✔

Table 3: Most prevalent query parameters from A, D, F, G, H and J 2023 DITL data

The testbed resolvers always send EDNS with DO flag set and 4 distinct UDP Message sizes:

EDNS UDP
message size

DO
flag

Software

512 ✔ : bind-9.10.8 … 9.16.41
1232 ✔ : bind-9.16.41 … 9.19.13, knot-resolver-5.5.3 … 5.6.0,

pdns-recursor-4.2.1 … 4.8.4, unbound-1.5.10, 1.13.0 … 1.17.1
1680 ✔ : pdns-recursor-4.0.9 … 4.1.15
4096 ✔ : bind-9.9.11, 9.11.6 … 9.15.8, unbound-1.5.10 … unbound-1.9.6

TCP ✔ : all resolver software
Table 4: Most prevalent query parameters from the resolver testbed

For the priming response analysis, we have chosen query parameters - based on the perceived
most prevalent parameters - that allow us to deduce the aspects of the responses for other
parameters. Those parameters are No EDNS, UDP message size 512 with DO flag, UDP
message size 4096 with DO, and TCP with and without DO flag. The TCP responses will show
the sizes without size constraints. The UDP message size 4096 is chosen over 1232, because
many of the root-server authoritative name server software already restrict the maximum UDP
message size to 1232. In this way we highlight the exceptions.

All priming queries have been sent with DiG 9.16.37. The following DiG commands have been
issued to get the responses for the query parameters on both the IPv6 and IPv4 addresses of all
the { Letter, OS, Software } combinations:

noedns : dig @<ip> +norec +ignore +noedns -c IN -q . -t NS

512 DO : dig @<ip> +norec +ignore +bufsize=512 +dnssec -c IN -q . -t NS

4096 DO : dig @<ip> +norec +ignore +bufsize=4096 +dnssec -c IN -q . -t NS

TCP : dig @<ip> +norec +tcp +nodnssec -c IN -q . -t NS

TCP DO : dig @<ip> +norec +tcp +dnssec -c IN -q . -t NS

These arguments to DiG will cause it to send a DNS Cookie option with EDNS. This will enable
us to distinguish name servers that respond to DNS Cookies.

RSSAC028 Implementation study report 26

Several of the { Letter, OS, Software } combinations produce equal results. We have ordered
those in eight groups and will treat them per group in the following sections.

Group I
The first group with equal priming responses consists primarily of BIND software. In all the
priming response properties tables, the full list of { Letter, OS, Software } combinations for which
those responses apply is in the table caption.

The top row in the table displays the query parameters:

noedns : UDP transport without EDNS.
512 DO : UDP transport with an EDNS UDP message size of 512 and the DO flag set.

4096 DO : UDP transport with an EDNS UDP message size of 4096 and the DO flag set.
TCP : TCP transport with EDNS. The row below the top row further distinguishes

between TCP without the DO flag set and with the DO flag set.

The properties of the responses are in the column below the parameters for each naming
scheme on each bordered row:

size : The size of the response.
NS : The number NS resource records in the answer section. An RRSIG for the NS

RRset is indicated with “/ 1” appended to the value.
A : The number of A resource records in the additional section. The number of

signatures for those resource records is indicated with a number after a slash “/”.
AA
AA : The number of AAAA resource records in the additional section. The number of

signatures for those resource records is indicated with a number after a slash “/”.
tc : Whether or not the TC flag is set, indicated by a check mark.

sigs : The number of signatures in the response over TCP.

The name schemes are indicated before the (bordered) rows. If more than one name scheme
produces the same value, they are combined. With all current root-server software, naming
schemes 5.1 and 5.2 produce equal priming responses.

When the properties of the responses differ depending on whether IPv4 or IPv6 was used, the
content of the table cell is split in two rows, the top one showing the values for IPv6 and the
bottom one showing them for IPv4.

RSSAC028 Implementation study report 27

The responses in Table 5 have the following properties.
● Addresses for the values of the NS records are added in the additional section.

○ First the addresses for the IP version over which the query was sent,
○ Then the addresses of the other IP version as space permits.

● No RRSIGs are ever included in the additional section.
● When the RRSIG for the . NS RRset does not fit, the TC flag is set.
● All responses with the TC flag set have an empty answer and additional section.
● 5.6 and 5.6.1 are the only schemes that do not have the TC flag set for any of the query

parameters. This is the case for all groups except for Group VII and Group VIII.
● All UDP responses stay below 1232 bytes. Only for scheme 5.5.1 the TCP DO

responses exceed the 1232 limit, and hence this is the only scheme for which the
additional address records are incomplete with “4096 DO” query parameters.

⚠ No additional address records are added with naming schemes in which they are
authoritative in the root zone itself (5.3, 5.3.1, 5.6 and 5.6.1). This behavior is only seen
in this group and in Group II which consists of only BIND.

● The software in this group responds to DNS Cookies.

noedns 512 DO 4096 DO TCP #
si
gssize NS A

AA
AA tc size NS A

AA
AA tc size NS A

AA
AA tc size

DO
size

5.1&
5.2

6 492 13 0 9
56 0 0 0✔ 1137 13/1 13 13 851 1137 1

4 504 13 13 2

5.3 236 13 0 0 56 0 0 0✔ 561 13/1 0 0 275 561 1

5.3.1 211 13 0 0 56 0 0 0✔ 536 13/1 0 0 250 536 1

5.4
6 488 13 0 9

56 0 0 0✔ 1133 13/1 13 13 847 1133 1
4 500 13 13 2

5.5
6 500 13 0 8

56 0 0 0✔ 1173 13/1 13 13 887 1173 1
4 512 13 13 1

5.5.1
6 503 13 0 3

56 0 0 0✔
1220 13/1 7 13

1030 1316 1
4 499 13 5 0 1232 13/1 13 10

5.6 42 1 0 0 367 1/1 0 0 367 1/1 0 0 81 367 1

5.6.1 46 1 0 0 371 1/1 0 0 371 1/1 0 0 85 371 1

Table 5: Response sizes and properties for C Alma BIND 9.16.39, C CentOS BIND 9.16.39,
F FreeBSD BIND 9.16.39, G Linux BIND 9.16.29, X4 (conf), X6 (conf) and X9 (conf)

RSSAC028 Implementation study report 28

Group II
This Group consists of only BIND software. This group has similar properties as Group I, except
that DNS Cookies are missing in the responses, which results in 28 byte smaller responses. The
smaller responses have the additional effect that also scheme 5.3.1 does not cause a TC flag
set for any of the query parameters. A property it has in common with Group III, IV, V and VI.

noedns 512 DO 4096 DO TCP #
si
gssize NS A

AA
AA tc size NS A

AA
AA tc size NS A

AA
AA tc size

DO
size

5.1&
5.2

6 492 13 0 9
28 0 0 0✔ 1109 13/1 13 13 823 1109 1

4 504 13 13 2

5.3 236 13 0 0 28 0 0 0✔ 533 13/1 0 0 247 533 1

5.3.1 211 13 0 0 508 13/1 0 0 508 13/1 0 0 222 508 1

5.4
6 488 13 0 9

28 0 0 0✔ 1105 13/1 13 13 819 1105 1
4 500 13 13 2

5.5
6 500 13 0 8

28 0 0 0✔ 1145 13/1 13 13 859 1145 1
4 512 13 13 1

5.5.1
6 503 13 0 3

28 0 0 0✔
1224 13/1 9 13

1002 1288 1
4 499 13 5 0 1232 13/1 13 11

5.6 42 1 0 0 339 1/1 0 0 339 1/1 0 0 53 339 1

5.6.1 46 1 0 0 343 1/1 0 0 343 1/1 0 0 57 343 1

Table 6: Response sizes and properties for E FreeBSD BIND 9.16.39,
K CentOS BIND 9.16.39, K CentOS BIND 9.18.13 and X1 (conf)

Group III
This group consists primarily of NSD software without explicit EDNS message size settings.
The responses in this group as shown in Table 7 have the following properties:

● Addresses for the values of the NS records are added in the additional section with a
preference for the IP version over which the query was sent, similar as in Group I and
Group II.

● Signatures for the addresses in the additional section are included if those addresses
are authoritatively present in the root zone itself, but in those cases only complete
address RRsets with signatures are included.
⚠ This results in large responses (more than 8k)

with “TCP DO” for schemes 5.3 and 5.3.1.
● When the RRSIG for the . NS RRset does not fit, the TC flag is set.
● All responses with the TC flag set have an empty answer and additional section.

RSSAC028 Implementation study report 29

noedns 512 DO 4096 DO TCP #
si
gssize NS A

AA
AA tc size NS A

AA
AA tc size NS A

AA
AA tc size

DO
size

5.1&
5.2

6 508 13 0 10
28 0 0 0✔ 1097 13/1 13 13 811 1097 1

4 492 13 13 2

5.3
6 504 13 0 10

28 0 0 0✔
1151 13/1 0 2/2

807 8555 27
4 488 13 13 2 1127 13/1 2/2 0

5.3.1
6 507 13 0 11

496 13/1 0 0
1126 13/1 0 2/2

782 8530 27
4 491 13 13 3 1102 13/1 2/2 0

5.4
6 504 13 0 10

28 0 0 0✔ 1093 13/1 13 13 807 1093 1
4 488 13 13 2

5.5
6 488 13 0 8

28 0 0 0✔ 1133 13/1 13 13 847 1133 1
4 500 13 13 1

5.5.1
6 487 13 0 8

28 0 0 0✔ 1132 13/1 13 13 846 1132 1
4 499 13 13 1

5.6
6 406 1 0 13

339 1/1 0 0
990 1/1 0 13/1

625 1485 3
4 250 1 13 0 834 1/1 13/1 0

5.6.1
6 410 1 0 13

343 1/1 0 0
994 1/1 0 13/1

629 1489 3
4 254 1 13 0 838 1/1 13/1 0

Table 7: Response sizes and properties for D Linux NSD 4.6.1, H Linux NSD 4.5.0,
K NSD 4.6.1, L Ubuntu NSD 4.6.0, X2 (conf) and X5 (conf)

Group IV
This group has a single software NSD 4.1.20 with EDNS UDP message size set explicitly to
1450. This results in larger responses for naming scheme 5.3 and 5.3.1. All other responses are
equal to those in Group III.

noedns 512 DO 4096 DO TCP #
si
gssize NS A

AA
AA tc size NS A

AA
AA tc size NS A

AA
AA tc size

DO
size

5.3
6 504 13 0 10

28 0 0 0✔
1151 13/1 0 2/2

807 8555 27
4 488 13 13 2 1430 13/1 3/3 0

5.3.1
6 507 13 0 11

496 13/1 0 0
1126 13/1 0 2/2

782 8530 27
4 491 13 13 3 1405 13/1 3/3 0

Table 8: Response sizes and properties for D Linux NSD 4.1.20

L Ubuntu NSD 4.6.0 (not in this group) has the EDNS UDP message size explicitly set to 4096.
However that version of NSD adds additional addresses (after the first IPv4 and IPv6 address)
only if the resulting response size stays below the size of the minimal response setting.

RSSAC028 Implementation study report 30

Group V
This group contains Knot-DNS and the confidential configuration X3.

● The TC flag is set when the signature for the NS RRset does not fit, but unlike Group I,
II, III and IV, the NS RRset is still included. Unlinke Group VIII, no additional addresses
are included in truncated responses.

● This group, together with Group VI, VII and VIII, tries to add equal amounts of IPv4 and
IPv6 additional addresses regardless of the IP version of the used transport.

● Additional addresses, which are authoritatively present in the root zone, are included,
but signatures are left out when they do not fit the size restrictions for the response.

noedns 512 DO 4096 DO TCP #
si
gssize NS A

AA
AA tc size NS A

AA
AA tc size NS A

AA
AA tc size

DO
size

5.1 &
5.2 508 13 2 2 431 13 0 0✔ 1217 13/1 12 11 1003 1289 1

5.3 500 13 3 3 379 13 0 0✔ 1209 13/1 13 12 951 8699 27

5.3.1 507 13 7 7 512 13/1 1 0 1068 13/1 13 13 782 8530 27

5.4 500 13 3 3 379 13 0 0✔ 1209 13/1 13 12 951 1237 1

5.5 500 13 6 5 275 13 0 0✔ 1133 13/1 13 13 847 1133 1

5.5.1 511 13 3 2 418 13 0 0✔ 1232 13/1 12 12 990 1276 1

5.6 250 1 13 0 339 1/1 0 0 1198 1/1 13/1 13 625 1485 3

5.6.1 254 1 13 0 343 1/1 0 0 1202 1/1 13/1 13 629 1489 3

Table 9: Response sizes and properties for K Knot 3.1.9, K Knot 3.2.6 and X3 (conf)

Group VI
This single software group has EDNS UDP message size configured to be 4096. This results in
larger UDP responses when queried with EDNS UDP message size larger than 1232. Other
than that, the properties and sizes of the responses in this group are equal to those of Group V.

noedns 512 DO 4096 DO TCP #
sig
ssize NS A

AA
AA tc size NS A

AA
AA tc size NS A

AA
AA tc size

DO
size

5.1 &
5.2 508 13 2 2 431 13 0 0✔ 1289 13/1 13 13 1003 1289 1

5.3 500 13 3 3 379 13 0 0✔ 3820 13/1 13/5 13/4 951 8699 27
5.3.1 507 13 7 7 512 13/1 1 0 3938 13/1 13/5 13/5 782 8530 27
5.4 500 13 3 3 379 13 0 0✔ 1237 13/1 13 13 951 1237 1
5.5 500 13 6 5 275 13 0 0✔ 1133 13/1 13 13 847 1133 1
5.5.1 511 13 3 2 418 13 0 0✔ 1276 13/1 13 13 990 1276 1
5.6 250 1 13 0 339 1/1 0 0 1485 1/1 13/1 13/1 625 1485 3
5.6.1 254 1 13 0 343 1/1 0 0 1489 1/1 13/1 13/1 629 1489 3
Table 10: Response sizes and properties for L Ubuntu Knot 3.1.8

RSSAC028 Implementation study report 31

Group VII
This group consists of a single software: X7 (conf).

● This group is the only group in which the responses have the TC flag set when not all
additional addresses fit in the additional section.

noedns 512 DO 4096 DO TCP #
si
gssize NS A

AA
AA tc size NS A

AA
AA tc size NS A

AA
AA tc size

DO
size

5.1&
5.2 508 13 7 6✔ 239 13 0 0✔ 1097 13/1 13 13 811 1097 1

5.3 504 13 7 6✔ 521 13/1 0 0✔ 1183 13/1 2/1 2/1✔ 807 8555 27

5.3.1 507 13 7 7✔ 496 13/1 0 0✔ 1158 13/1 2/1 2/1✔ 782 8530 27

5.4 504 13 7 6✔ 235 13 0 0✔ 1093 13/1 13 13 807 1093 1

5.5 500 13 6 5✔ 275 13 0 0✔ 1133 13/1 13 13 847 1133 1

5.5.1 499 13 6 5✔ 274 13 0 0✔ 1132 13/1 13 13 846 1132 1

5.6 250 1 13 0✔ 339 1/1 0 0✔ 1198 1/1 13/1 13✔ 625 1485 3

5.6.1 254 1 13 0✔ 343 1/1 0 0✔ 1202 1/1 13/1 13✔ 629 1489 3

Table 11: Response sizes and properties for X7 (conf)

Group VIII
This group consists of a single software: X8 (conf).

● The TC flag is set when the signature for the NS RRset does not fit, but like with Group
V, VI and VII, the NS RRset itself remains. Unlike any other group, additional addresses
are still included with truncated responses without NS signature.

● Unlike Group II, III, IV and V, naming scheme 5.3.1 for 512 DO is truncated, even
though without additional addresses there would have been space for the NS signature.

noedns 512 DO 4096 DO TCP #
si
gssize NS A

AA
AA tc size NS A

AA
AA tc size NS A

AA
AA tc size

DO
size

5.1&
5.2 508 13 7 6 503 13 6 6✔ 1097 13/1 13 13 811 1097 1

5.3&
5.4 504 13 7 6 499 13 6 6✔ 1093 13/1 13 13 807 1093 1

5.3.1 507 13 7 7 490 13 7 6✔ 1068 13/1 13 13 782 1068 1

5.5 500 13 6 5 511 13 6 5✔ 1133 13/1 13 13 847 1133 1

5.5.1 499 13 6 5 510 13 6 5✔ 1132 13/1 13 13 846 1132 1

5.6 502 1 13 9 485 1 13 8✔ 911 1/1 13 13 625 911 1

5.6.1 506 1 13 9 489 1 13 8✔ 915 1/1 13 13 629 915 1

Table 12: Response sizes and properties for X8 (conf)

RSSAC028 Implementation study report 32

Priming responses properties

Group

Property I II III IV V VI VII VIII

Answers DNS Cookies ✔

Truncated messages contain no RRsets ✔ ✔ ✔ ✔

Set the truncate flag when not all additional addresses fit ✔

Prefer additional address records over NS signature ✔

Does not include in-zone additional addresses
(naming schemes 5.3, 5.3.1, 5.6 and 5.6.1)

✔ ✔

Prefer additional address records from same IP ✔ ✔ ✔ ✔

Include signatures for additional (in-zone) address records ✔ ✔ ✔ ✔ ✔

Include signatures for out-of-zone additional addresses14

Randomize RRs in NS RRset ✔ ✔ ✔ ✔

Additional address types are interlaced (IPv6 with IPv4) ✔ ✔ ✔ ✔

Table 13: Overview of properties of priming responses for all groups of authoritative name
server software in use by the root servers.

Table 13 provides an overview of the properties of priming responses for all groups of
authoritative name server software in use by the root servers. They differ with respect to:

● DNS Cookies : Only software in Group I returns a DNS Cookie on request.

● Truncated responses : All software sets the TC flag when the signature for the NS record
does not fit.

Truncated responses from software in Group I, II, III and IV are empty
and contain no RRsets in the answer, authority and additional
section. The other groups (V, VI, VII and VIII) do at least have the NS
RRset in the answer section.

Only responses from Group VII have the TC flag set when the
additional section does not contain all additional addresses.

14 None of the current software includes signatures for out-of-zone additional addresses, but we did
observe this property with BIND 9.10.3-P4 when reproducing the RSSAC028 Appendix A results.

RSSAC028 Implementation study report 33

Only responses from Group VIII have additional addresses when a
response is truncated due to a missing NS signature. With a choice,
this group prefers adding additional addresses over the NS signature.

● Additional addresses : All groups add additional addresses for the names of the root servers
in responses to a priming query, when the names for those addresses
are out-of-zone; i.e. the root zone is not authoritative for the names.
This is the case with naming schemes 5.1, 5.2, 5.4, 5.5 and 5.5.1.

Only responses from Group I and II do not in-zone include additional
addresses when those addresses are authoritatively present within
the root zone.

When not all additional addresses fit, responses from Group I, II, III,
IV prefer additional addresses for the same IP version as over which
the priming query and response are conveyed.

Responses from Group III, IV, V, VI and VII also have the signatures
of the in-zone additional addresses (from naming schemes 5.3, 5.3.1,
5.6 and 5.6.1) included. This results in large responses (larger than
8,000 bytes) over TCP, and large and fragmented responses over
UDP with Group VI.

None of the current and future name server software includes
signatures for out-of-zone addresses. During this study this has been
perceived while reproducing RSSAC028 Appendix A results with
BIND version 9.10.3.

● The order of RRs
and RRsets

: Group I, II, VII and VIII have the RRs in the NS RRset in randomized.

Group V, VI, VII and VIII provide additional address types interlaced,
the other provide first all the addresses for one type and then all the
addresses for the other type.

RSSAC028 Implementation study report 34

Testbed results
In the last two sections, we grouped the root server { Letter, OS, Software } combinations by
their response to priming queries and studied their properties and sizes. In this section, we
show the impact of the naming schemes, root server behavior and resolver behavior on priming.

The first test case shows how resolvers would react if we would introduce the new naming
schemes today. The root zone is served by their current software and the recursive resolvers
are not configured with a hint file but use their built-in hint file based on the current naming
scheme. The root servers in the root zones have alternative (new) IP addresses different from
those in the built-in hint file, to be able to test whether or not priming succeeded. Priming is
considered successful when a resolver learns and queries any of the alternative (new) IP
addresses for the root servers. For each naming scheme and resolver, we carry out the tests as
described in Running the testbed.

Figure 9 shows the results of the measurements. The color of each oval indicates if a resolver:
- failed resolving the check domains and failed priming (red),
- resolved the check domains successfully but failed priming (orange),
- failed resolving at least one of the check domains but succeeded priming (yellow),
- succeeded resolving the check domains and succeeded priming (green).

Within each oval, we indicate when the resolver initiated the priming query:
- ‘<’, the resolver sends the priming query during start-up.
- ‘=’, the resolver sends the priming query before it starts working on the test query.
- ‘>’, the resolver sends the priming query just after it starts working on the test query

The numbers within the oval show the number of priming queries before the slash, and the
number of direct address queries for the names in the priming response after the slash

Finally, a bold border of a circle indicates that queries were sent via TCP.

The color of the oval and the border indication TCP are used in all the tables presented in
Testbed results. The metric given by the text within the oval can be different, but is always listed
in the caption with the Figure showing the table.

Figure 9 shows that priming and test queries succeed in the majority of cases. However, a few
resolver-naming-schema combinations stand out. Also, some resolvers prime and resolve
successfully, but not with all root server authoritative software. In the following sections, we
analyze these cases further.

RSSAC028 Implementation study report 35

Figure 9: Naming scheme by Resolver table for the current root setup and current hints
Metric: priming timing, the number of priming queries / the number of address queries

RSSAC028 Implementation study report 36

Naming Scheme 5.4 and Knot Resolver
Figure 9 shows Knot Resolvers unable to prime and resolve the check domain names in naming
schema 5.4. Figure 10 shows that Knot Resolver fails this naming scheme with all root server
authoritative software. The number shown in the oval is the total number of NS queries to the
root-servers domain. This is only applicable to naming schemes in which the root servers have
their own domain (5.1, 5.2, 5.4, 5.5 and 5.5.1). Knot Resolver is the only resolver in the testbed
that sends NS queries to the root servers domain. No other resolvers do this.

When Knot Resolver fails, it is stuck repeating sending NS queries for ‘root-servers.’. The
message ‘cannot resolve address [a-m].root-servers.’ is logged despite the fact that we cannot
identify such a query in our traffic traces.

Figure 10: Naming scheme by { Letter, OS, Software } table for Knot Resolver.
Metric: the number of NS queries for the root servers domain.

RSSAC028 Implementation study report 37

Missing additional addresses of Group I and II name servers

Figure 11: { Letter, OS, Software } by Resolver table for Naming scheme 5.3.
Metric: The number of address queries for root servers, where:
“< 16” is less than 16, “= 26” is exactly 26 and “> 26” is more than 26

Figure 9 indicates larger numbers of address queries for the root servers for naming schemes
5.3, 5.3.1, 5.6 and 5.6.1: The naming schemes where the root server addresses are present
authoritatively in the root zone. As discussed in Priming responses from all root server software,
Group I and II (consisting primarily of BIND name servers) do not contain additional addresses
in priming responses for those naming schemes.

Figure 11 shows the number of address queries for root servers in a { Letter, OS, Software } by
Resolver table. Both rows and columns are collated. By grouping the number of address queries
into classes (“< 16” is less than 16, “= 26” is exactly 26 and “> 26” is more than 26), the columns
collate into the “Groups” identified in Priming responses from all root server software.

Figure 11 confirms that the larger number of address queries seen in Figure 9 are indeed
caused by name server software from Group I and II, and all resolvers except for PowerDNS
Recursor, follow up with queries for root server addresses when served by Group I or II.
PowerDNS Recursor, however, never sends follow-up address queries and as a result fails to
prime and resolve the test queries for naming schemes 5.3, 5.3.1, 5.6 and 5.6.1 with
authoritative name server software from Group I and II.

It is furthermore noteworthy that BIND 9.9.11 and Knot Resolver perform follow-up address
queries for the root servers. In our traces we noticed this happens with all naming schemes for
BIND 9.9.1 and for all naming schemes except for 5.1 and 5.2 with Knot Resolver.

RSSAC028 Implementation study report 38

Failed priming
Figure 9 shows that priming failed for naming schemes 5.1 and 5.2 for PowerDNS Recursor
4.1.15 and 4.2.1, and BIND 9.9.11. Figure 12 and Figure 13 show the Naming scheme by
{ Letter, OS, Software } tables for these resolvers. From these we can read this is the case with
all root server software. Figure 12 also shows that PowerDNS Recursor fails resolving all
together with naming schemes 5.3, 5.3.1, 5.6 and 5.6.1 as was discussed in the previous
Section Missing additional addresses of Group I and II name servers.

Figure 12: Naming scheme by { Letter, OS, Software } table for PowerDNS Recursor 4.2.1
Metric: The number of priming queries
(The same table for PowerDNS Recursor 4.1.15 has similar results)

Figure 13: Naming scheme by { Letter, OS, Software } table for BIND 9.9.11
Metric: The number of priming queries / number of root server address queries

Figure 14: Naming scheme by Resolver table for X8 (conf)
Where: Resolvers are configured with the root hints for the tested naming scheme
Metric: The number of priming queries classes / number of root server address queries
Classes: “1” is 1, “< 5” is more than 1 but less than 5

RSSAC028 Implementation study report 39

To further investigate these cases, we scheduled measurements in which the resolvers are
configured with root hint files for the tested naming scheme. We created “Naming scheme by
Resolver”-tables for all { Letter, OS, Software } combinations. Figure 14 shows this table for the
X8 (conf) root server software. We can see that, when explicitly configured with a hints file, the
BIND 9.9.11 and PowerDNS Recursor 4.1.15 and 4.2.1 fail priming. Furthermore, newer
versions of PowerDNS Recursor (4.7.5 and 4.8.4) now also fail priming when explicitly
configured with root hints for the naming scheme.

Figure 15 shows the same table for C Centos bind-9.16.39. In this table we can see that all
BIND resolvers, as well as PowerDNS Recursor 4.0.9 now also fail priming for the naming
schemes in which the root server addresses are authoritatively present in the root zone (5.3,
5.3.1, 5.6 and 5.6.1). We see similar results from other { Letter, OS, Software } combinations
from Group I and II that do not include the additional addresses for these naming schemes in
priming responses.

Figure 15: Naming scheme by Resolver table for C Centos bind-9.16.39 (conf)
Where: Resolvers are configured with the root hints for the tested naming scheme
Metric: The number of priming queries classes / number of root server address queries
Classes: “1” is 1, “< 5” is more than 1 but less than 5

RSSAC028 Implementation study report 40

Influence on UDP/TCP traffic
As shown in Figure 9 and as expected, different naming schemes and different resolver
behavior can lead to truncated responses and priming queries via TCP.

Avoiding TCP with naming scheme 5.3.1
As shown in Table 4 in Priming responses from all root server software, BIND versions 9.10.8 …
9.16.41 send a priming query with an EDNS(0) buffer size set to 512 bytes. In general, this
leads to truncated responses and results in a TCP retry. Here, naming scheme 5.3.1 is the
exception; the priming query can fit into 512 byte UDP messages when sent to { Letter, OS,
Software } combinations that do not return DNS cookies. Figure 16 shows priming results for
BIND 9.10.8 up to 9.16.41 with naming scheme 5.3.1 per { Letter, OS, Software } combinations.

Figure 16: Naming scheme by { Letter, OS, Software } table for BIND 9.10.8
Metric: The number of priming queries / number of root server address queries

An oval with a black outline indicates priming queries over TCP
BIND 9.11.6 .. 9.16.41 have similar tables.

Increase in TCP traffic

Figure 17: Naming scheme by Resolver table for Group VII - X7 (conf)
Metric: The total number of bytes transferred over TCP.

RSSAC028 Implementation study report 41

The largest increase in TCP traffic, both in number of TCP sessions and in size, can be
observed between resolvers and root server configuration X7 (conf), since X7 always sets the
TC flag when not all additional addresses fit (See Figure 17).

Still high in the number of TCP sessions, but causing the smallest amount of TCP traffic from all
the root server software that still work with PowerDNS Recursor (i.e. all software except from
Group I and II as discussed in Missing additional addresses of Group I and II name servers and
Section Failed priming), is root server configuration X8 (conf). This can be explained by the fact
that this server includes additional addresses, but not the signatures for them with the naming
schemes where those addresses are authoritatively present in the root zone (5.3, 5.3.1, 5.6 and
5.6.1).

Figure 18: Naming scheme by Resolver table for Group VIII - X8 (conf)
Metric: The total number of bytes transferred over TCP.

Name server software from Group III … VI, which consist of primarily NSD and Knot DNS,
cause the least TCP sessions, and are sizewise in between X7 (Largest) and X8 (Smallest)

Failure scenarios
Aside from test cases in which a resolver should be able to prime successfully, we also tested
cases in which resolver operations were impaired in some way.

Unable to validate
Resolvers that would be unable to validate DNSSEC, for example because of a clock which is
out of sync, behave differently when priming. Figure 19 shows priming results for root server
setup X8 (conf) and resolvers with a clock set to the year 2000.

RSSAC028 Implementation study report 42

Figure 19: Naming scheme by Resolver table for Group VIII - X8 (conf)
Where: The resolvers clock is set to outside the DNSSEC validity period
Metric: The number of priming queries / number of root server address queries

Most resolvers prime successfully, but some fail to resolve the test domain name. Priming of
Knot Resolver always fails and also PowerDNS Recursor versions 4.7.5 … 4.8.4 fail priming
with all naming schemes except naming schemes 5.1 and 5.2. This may indicate that those
versions of PowerDNS Recursor and Knot Resolver validate priming responses. We assume
that we would see similar results with other causes for DNSSEC failure.

Unable to send queries via TCP
Resolvers that are unable to send queries over TCP fail to prime in some cases. Figure 20
shows that for root server setup X8 (conf), priming fails with BIND versions 9.10.8 … 9.16.41.
These are the versions that start priming with EDNS UDP Message size 512 (See Table 4).

In case resolvers without TCP support query the root servers of setup X7 (conf), resolvers start
failing to resolve with some or all naming schemes (see Figure 21). This is due to the fact that
this setup returns the TC flag in case of missing additional addresses, and as a result returns
responses with the TC flag set more frequently than the other root server authoritative software.

If Unbound is unable to get priming responses, it will also not resolve the following queries and
the same applies to some versions of BIND (at least 9.13.7 … 9.14.10). Since X7 (conf) does
include additional addresses in truncated responses, this suggests that Unbound and those
versions of BIND discard the content of truncated responses all together and rely in those cases
on the response returned over TCP.

RSSAC028 Implementation study report 43

Figure 20: Naming scheme by Resolver table for Group VIII - X8 (conf)
Where: The resolvers cannot reach the authoritative over TCP
Metric: The number of priming queries classes / number of root server address queries
Classes: “1” is 1, “< 5” is more than 1 but less than 5,

“< 20” is 5 or more than 5 but less than 20,
“< 100” is 20 or more than 20 but less than 100

Figure 21: Naming scheme by Resolver table for Group VII - X7 (conf)
Where: The resolvers cannot reach the authoritative over TCP
Metric: The number of priming queries classes / number of root server address queries
Classes: “1” is 1, “< 5” is more than 1 but less than 5,

“< 20” is 5 or more than 5 but less than 20,
“< 100” is 20 or more than 20 but less than 100

RSSAC028 Implementation study report 44

Properties of resolvers
This table summarizes the general behavior of resolvers derived from our tests.

Property Resolvers Observed behavior

Moment of priming knot-resolver-*
pdns-recursor-*

After startup

unbound-* Before it starts working on a query

bind-* Just after it starts working on a query

Address queries pdns-recursor-* Never query for root server addresses

unbound-*
bind-9.10.8 … 9.19.13

Query root server addresses when there
were none in the priming response

bind-9.9.11 & knot-resolver-* Always query for root server addresses

DNSSEC validation pdns-recursor-4.7.5 … 4.8.4
knot-resolver-5.5.3 … 5.6.0

Does not resolve with a clock skewed
outside of DNSSEC validity period

Truncated
responses15

unbound-*
bind-9.13.7 … 9.14.10

The content of truncated responses is
ignored. The content is expected to be
acquired in the follow-up query over TCP

15 This property is deduced from the results seen in Unable to send queries via TCP

RSSAC028 Implementation study report 45

Impact of search lists on different naming schemes

According to RSSAC028, all naming schemes that introduce a new TLD or a new name in the
root zone increase the potential of name collisions with existing resolver search lists. This
concerns naming schemes 5.3, 5.4, 5.5 and 5.6.

SAC5316 and SAC6417 discuss the impact of search lists and the introduction of new TLDs.
SAC64 Recommendation 1.b states “When a user enters a single label name, that name may
be subject to search list processing if a search list is specified, but must never be queried in the
DNS in its original single-label form.” and 1.c states “When a user queries a hostname that
contain two or more labels separated by dots, such as www.server, applications and resolvers
must query the DNS directly. Search lists must not be applied even if such names do not resolve
to an address (A/AAAA). Therefore www.server is always a FQDN.”

Applying these recommendations to the proposed naming schemes, this would mean that single
label names like “a” and “b” could be subject to search list processing. Additionally,
recommendation 1.b even goes further and recommends not to query single labels at all.

For this report we tested two commonly used stub resolvers: systemd-resolved18 and
dnsmasq19. Both support DNSSEC validation. Dnsmasq does not support the configuration of
search lists for when resolving but can only instruct DHCP clients to use search lists.
Systemd-resolved does support search lists and we tested its effect on scenario 5.3.1. Here, we
added a domain name under our control (e.g. example.) to the search lists with existing
subdomain-labels [a-m] (e.g. a.example.) and an A.

When querying for the A record of root server letter (e.g. “a”), resolved responded with the
record of our test domain. When querying for the corresponding DNSKEY record, resolving
failed with return code SERVFAIL. However, since stub resolvers do not perform priming
queries, we do not expect this to impact regular operations.

19 https://dnsmasq.org/
18 https://github.com/systemd/systemd

17 ICANN Security and Stability Advisory Committee (SSAC), “SAC064 SSAC Advisory on DNS ‘Search
List’ Processing”, 2014. https://www.icann.org/en/system/files/files/sac-064-en.pdf

16 ICANN Security and Stability Advisory Committee (SSAC), “SSAC Report on Dotless Domains”, 2012.
https://www.icann.org/en/system/files/files/sac-053-en.pdf

RSSAC028 Implementation study report 46

Discussion and Conclusion
In the RSSAC028 report, alternative naming schemes for the root servers were considered, and
evaluated with respect to the effect and risks they would induce on the root server system. The
primary recommendation was to make no changes to the current naming scheme until more
studies have been conducted. One of the recommended follow-up studies was into
understanding the current behavior of DNS resolvers and how each naming scheme would
affect these behaviors. This document is a report on such a follow-up resolver behavior study.

RSSAC028 further broke down the follow-up study recommendation into a list of topics relevant
for further research. Those topics are enumerated below referencing the parts of the report in
which the topic is addressed.

● The acceptable response size for priming queries

We carried out a literature study to identify the maximum supported packet size on the
Internet in Acceptable response sizes.

Since the RSSAC028 report, the DNS community discussed packet size support extensively
which eventually led to DNS Flag Day 2020 with the recommendations for maximum safe
message sizes. The implementation of those recommendations can be seen in the current
software landscape, both in the size of priming responses (see Reproducing RSSAC028
Appendix A results) as well as EDNS UDP Message size parameters of resolver software
(see Most prevalent query parameters).

The limitation on the response size impacts other properties of priming responses, such as
the number of address records for the root servers in the additional section, whether or not
DNSSEC signatures for additional addresses are included and whether or not the TC
(truncate) flag is set in the response. These properties impact resolver behavior and thereby
the performance of the root server system. These properties vary per naming scheme and
per authoritative name server software.

To inventory the authoritative name server software in use on the root server system, we
conducted a survey of the root server operators (see Survey of Root Server Operators). We
received information on all current and future root server software (see Survey results). Two
proprietary authoritative name server software were reported for which we arranged priming
responses for the naming schemes. With these we created simulations of the authoritative
name server software based on ldns-testns datafiles (see Simulating the proprietary
authoritative name server software).

In Priming responses from all root server software we provide a detailed overview of the
priming responses for all the current and future versions of the root server software with all
the naming schemes. We identify eight groups of root server software that have equal
priming responses for those naming schemes.

RSSAC028 Implementation study report 47

● How resolver software responds to a reduced set of glue records

We created a Resolver testbed, consisting of a simulation of the root server system, where
each root server is running on the in the survey reported open source software, on the
reported operating system, with the reported network parameters, and the proprietary
software is simulated with ldns-testns. The testbed contains various versions of open source
resolver software and provides the means to evaluate priming behavior and resolver
behavior in general, for simulations of the current and future root server system - as well as
for other root server software configurations - equipped with the naming schemes to be
evaluated.

Many of the priming responses identified in the eight groups of priming responses in Priming
responses from all root server software, already provided an incomplete, or even completely
absent set of addresses for the root servers in the additional section. The impact of these
properties is evaluated by studying resolver behavior with simulations of the root server
system consisting entirely from software from the group with those properties.

In Missing additional addresses of Group I and II name servers we see that absent address
records for the root servers in the additional section will cause follow-up queries for those
addresses from all resolvers except for PowerDNS Recursor, which is then no longer able to
resolve.

Absent additional addresses furthermore causes BIND and PowerDNS Recursor resolvers
to fail learning new IP addresses for the root servers when the NS RRset for the root is
equal to the one in the built-in or provided by a root hints file (see Figure 15 in Failed
priming). Note that some versions of PowerDNS Recursor and BIND 9.9.11 also fail to learn
new IP addresses for the root servers even with additional addresses which is discussed in
the same section.

Related to the question of absent additional addresses, is how the presence of additional
addresses and the NS RR in the answer section in truncated responses affects resolvers.
This is studied in Unable to send queries via TCP. From Figure 20 and Figure 21 in that
section we can deduce that Unbound disregards the content of truncated responses
altogether.

● How resolver implementations handle a bogus response to priming queries

We address the impact on resolvers of a clock skewed to outside of the DNSSEC validity
period of the root and root servers zones in Unable to validate. PowerDNS Recursor 4.7.5
and 4.8.4 and Knot Resolver 5.5.3 and 5.6.0 stop working altogether in those cases. This
may indicate that those versions of PowerDNS Recursor and Knot Resolver validate priming
responses. We assume that we would see similar results with other causes for DNSSEC
failure.

RSSAC028 Implementation study report 48

● How search lists might be relevant

This is addressed in Impact of search lists on different naming schemes. Systemd-resolved
was evaluated with naming scheme 5.3.1 and single letter label name in a test domain
which was in the search list. The search list did not have an impact on resolving and
DNSSEC in general and for the single letter label name in the test domain.

Observation per naming scheme
In the below sections we put forward some noteworthy observations and potential and actual
issues we have seen with resolver behavior per naming scheme. We note that problematic
resolver behavior in relation to specific properties of priming responses can be addressed by
“fixing” the authoritative name server software to be deployed on the root system, but that
problematic resolver behavior for naming schemes regardless of the properties of the priming
responses would be impossible to address with “fixes” to resolver software on the short-term,
because they are out of our or anyone’s reach.

● 5.1 and 5.2, Current and current + DNSSEC

BIND 9.9.1 and PowerDNS Recursor version 4.1.15 and 4.2.1 fail to learn new (alternative)
IP addresses for root servers in the additional section of priming responses, when the root
NS RRset matches that of the built-in or loaded hints file (see Failed priming).

With a loaded hints file (not relying on the built-in root hints), also PowerDNS versions 4.7.5
and 4.8.4 do not learn new IP addresses from the additional section in priming responses.

● 5.3 and 5.3.1, In-zone NS names

Group I and II authoritative name servers (primarily BIND) do not include the addresses for
the root servers in the additional section.

All tested versions of PowerDNS Recursor fail to prime and resolve, when this naming
scheme is served by software from group I or II (see Missing additional addresses of Group I
and II name servers). This is also the case for the other naming schemes that have the
addresses for the root server authoritatively present in the root zone (5.3.1, 5.6 and 5.6.1).

Other resolvers generate more queries for priming because of the follow-up address queries
for the root servers.

Software from group III, IV, V, VI and VII include DNSSEC signatures for the address
records which leads to a limited number of addresses for root servers in the additional
section as well as very large responses (more than 8500 bytes) over TCP.

RSSAC028 Implementation study report 49

Software from group VII furthermore causes many TCP sessions from resolvers, by setting
the TC flag on responses that do not have all IP addresses for the root servers in the
additional section (see Increase in TCP traffic).

● 5.4, Shared delegated TLD

The tested versions of Knot Resolver fail to prime and resolve with this naming scheme
regardless of how this naming scheme is served.

● 5.5 and 5.5.1, Names delegated to each operator

We have not observed any notable deviating or problematic behavior with this naming
scheme with any of the tested resolvers.

● 5.6 and 5.6.1, Single shared label for all Operators

As with 5.3 and 5.3.1, authoritative software from group I and II do not include addresses for
the root servers in the additional section, which causes PowerDNS Recursor to fail to prime
and to resolve.

As with 5.3 and 5.3.1, authoritative software from group III, IV, V, VI and VII include
DNSSEC signatures for the address records, however because naming schemes 5.6 and
5.6.1 only need to include a single DNSSEC signature for all IPv4 and a single DNSSEC
signature for all IPv6 addresses instead of 13 for each, the resulting responses are much
smaller. As a consequence more additional addresses are included in the responses over
UDP and the TCP responses are also much smaller, resulting in fewer TCP sessions and
less TCP traffic.

The complete priming response with all additional addresses and signatures is still larger
than 1232 bytes (DNS Flag-day recommended UDP size) though, resulting in responses
with the TC bit set from authoritative server software from group VII (X7 (conf)).

RSSAC028 Implementation study report 50

Acknowledgement
Many thanks to Jennifer Bryce, Matt Larson, Paul Hoffman for their patience, support and
positive feedback, to the root operators for helping us out with all the information we needed to
do this research, to the providers of the proprietary software for performing priming responses
on their software on our behalf, and another thank you to Paul Hoffman for the design and work
on the original resolver testbed from which we developed the testbed used in this research.

RSSAC028 Implementation study report 51

Appendix A: RSO Survey
Email, sent to RSO’s.

Survey of RSO Authoritative Server Software

Introduction
Our consortium of NLnet Labs and SIDN is carrying out a study on behalf of ICANN on
the naming scheme used for the root servers (the RSSAC028 Implementation study).
This is a follow up study of the Advisory from the ICANN Root Server System Advisory
Committee (RSSAC) RSSAC028.

The goal of our study is to do an impact analysis of the different alternative naming
schemes proposed in section 5 of RSSAC028. Part of this, is an extensive survey of
software and configurations used by Root Server Operators (RSOs). The different
naming schemes proposed in RSSAC028 are tested in combination with the used
configurations in a testbed.

An announcement of this work has been presented at the RSO meeting that was held
the 24th of July alongside the IETF114 meeting in Philadelphia .

Survey
In order to test the naming schemes in a realistic testbed, we kindly request the RSOs to
provide us with some information, like which software and version is used to serve the
root zone and how it is configured. This information is only used for performing the study
and we plan to include the result and the configuration in the final report, which will be
shared with ICANN, the RSSAC Caucus, and the general community. For each answer,
please indicate under which conditions you are willing to provide this information. Note
that we will not share anything without your explicit consent.

Could you please answer the questions in the questions section below by replying to this
email and providing the answers inline in the reply. Any additional files can be attached
to the reply email. The reply may be PGP encrypted with the PGP key of any of this
study's team members:

Redacted

For convenience, I (Willem) have attached my PGP key to the email.

We would appreciate it if you could respond within two weeks (before Monday the 26th
of September) so that we can move to the analysis part of this work in a timely manner.

RSSAC028 Implementation study report 52

Questions
Question 1: What authoritative name server software are you using to serve the root
zone or are you planning to use in the near future? Which version of the software do you
use and on which platform? If different software is used in parallel or as a backup,
please include them as well.

Question 2: Is the name server software compiled with custom compile-time options
and/or configuration for compilation? If so, are you able and willing to provide those
options and/or configuration?

Question 3: If the software used is open source, would you be willing to provide us with
the configuration files? If yes, please attach the configuration files to this response.

Question 4: If the software is proprietary, would you willing to share it with us or provide
us with an installation we can use to perform our tests?

Question 5: Do you have public facing load balancers or other infrastructure you
consider important for this study?

Question 6: Are there any other parameters of your name server setup relevant to this
study? For example, do your name servers support DNS cookies? Which path MTU(s)
do you have configured? Have you enabled minimal responses or similar functions?

Many thanks for your feedback and cooperation,

Willem Toorop on behalf of the consortium

RSSAC028 Implementation study report 53

Appendix B: Reproducing RSSAC028 Appendix A

The rssac028-appendix-a.yml ansible playbook in the resolver testbed performs all the
necessary tasks to reproduce the results in the table; including installation of older versions of
BIND, NSD and Knot-DNS. The playbook needs only the servers-vm to deploy the zones for the
schemes to be tested and to perform the testing queries. The playbook will create a file
rssac028-appendix-a.txt in the ansible/results directory containing the measured sizes.

Reproduced RSSAC028 Appendix A results

BIND 9.10.3-P4

Scenario No EDNS No DNSSEC IPv4 DNSSEC IPv6 DNSSEC

5.1 508 811 1097 1097

5.2 508 811 3833 3833

5.3 507 782 3938 3938

5.4 504 807 4093 4093

5.5 264 275 561 561

5.6 250 625 1485 1485

NSD 4.1.13

Scenario No EDNS No DNSSEC IPv4 DNSSEC IPv6 DNSSEC

5.1 492 811 1097 1097

5.2 492 811 1097 1097

5.3 491 782 1405 1126

5.4 488 807 1093 1093

5.5 500 847 1133 1133

5.6 250 625 1485 990

RSSAC028 Implementation study report 54

Knot DNS 2.2.1

Scenario No EDNS No DNSSEC IPv4 DNSSEC IPv6 DNSSEC

5.1 508 811 1097 1097

5.2 508 811 1097 1097

5.3 507 782 3938 3938

5.4 504 807 1093 1093

5.5 500 847 1133 1133

5.6 250 625 1485 1485

Knot DNS 2.3.0

Scenario No EDNS No DNSSEC IPv4 DNSSEC IPv6 DNSSEC

5.1 228 239 525 525

5.2 228 239 525 525

5.3 507 782 3938 3938

5.4 224 235 521 521

5.5 264 275 561 561

5.6 250 625 1485 1485

Results for recent versions of BIND, NSD and Knot DNS

BIND 9.18.13

Scenario No EDNS No DNSSEC IPv4 DNSSEC IPv6 DNSSEC

5.1 504 823 1109 1109

5.2 504 823 1109 1109

5.3 211 222 508 508

5.4 500 819 1105 1105

5.5 512 859 1145 1145

5.6 42 53 339 339

RSSAC028 Implementation study report 55

NSD 4.6.1

Scenario No EDNS No DNSSEC IPv4 DNSSEC IPv6 DNSSEC

5.1 492 811 1097 1097

5.2 492 811 1097 1097

5.3 491 782 1102 1126

5.4 488 807 1093 1093

5.5 500 847 1133 1133

5.6 250 625 834 990

Knot DNS 3.2.5

Scenario No EDNS No DNSSEC IPv4 DNSSEC IPv6 DNSSEC

5.1 508 1003 1217 1217

5.2 508 1003 1217 1217

5.3 507 782 1068 1068

5.4 500 951 1209 1209

5.5 500 847 1133 1133

5.6 250 625 1198 1198

RSSAC028 Implementation study report 56

Appendix C: Naming schemes cheat sheet

RSSAC028 Implementation study report 57

