Deep Dive into NTP Pool Popularity and Mapping

Giovane C. M. Moura^{1,2}, Marco Davids¹, Caspar Schutijser¹, Cristian Hesselman^{1,3}, John Heidemann⁴, and Georgios Smaragdakis²

SIDN Labs
 TU Delft
 University of Twente
 USC/ISI

ACM SIGMETRICS 2024 Venice, Italy 2024-06-11

Introduction

Evaluating the importance of the NTP Pool

NTP Pool client-server mapping

Mapping Implications

Discussion with Operators

Conclusions

Ancient Roman Sundial Pompeii, 70 AD

Churches with pendulum clocks Middle ages to now

Timekeeping nowadays

Atomic Clocks

US NIST-F2 Precision: 1s in 300M years

- They produce time info
- Distributed over the Internet
 - Using the Network Time Protocol (NTP)

Why clock synchronization matters?

- It underpins modern life:
 - Phone sync
 - Computers sync
 - Utility bills
 - Trains on time
- On the Internet:
 - TLS
 - DNSSEC
 - DNS caches
 - RPKI
 - Bitcoin
- USNO 2021 time incident caused outages

La persistència de la memòria Salvador Dalí, 1931

- Internet default protocol for clock sync
- NTP servers are sync'ed with out-of-band references:
 - Atomic clocks
 - Satellites (GPS, Galileo)
 - Radio (DC77 in DE)
- Clients queries NTP servers
 - NTP mitigates effects of jitter

Prof. David L. Mills NTP creator

Passed away in Jan 17th, 2024.

- t1: Timestamp when the request is sent
- t2: Timestamp when the request is received by the server
- t3: Timestamp when the response is sent
- t4: Timestamp when the response is received by the client

Clock discipline algorithm

• Vint Cerf on NTP: "I always thought that was sort of black magic"

- US: NIST, USNO
- After 2010: Big Tech
 - Apple, Meta, Google, Cloudflare, Microsoft, Ubuntu ...
- NTP Pool
 - $\bullet\,$ run by volunteers
 - active for 20 years

What is the NTP pool?

- US: NIST, USNO
- After 2010: Big Tech
 - Apple, Meta, Google, Cloudflare, Microsoft, Ubuntu ...
- NTP Pool
 - $\bullet\,$ run by volunteers
 - active for 20 years

What is the NTP pool?

- Origins:
 - People wanted to share NTP servers
 - Keeping a list of free NTP servers was impractical
- Solution: use DNS
 - pool.ntp.org
- Currently: **4724 servers**
- More than **20 years active**
- https://ntppool.org

- Origins:
 - People wanted to share NTP servers
 - Keeping a list of free NTP servers was impractical
- Solution: use DNS
 - pool.ntp.org
- Currently: **4724 servers**
- $\bullet\,$ More than 20 years active
- https://ntppool.org

NTP Pool maps clients to servers

Client #1 :~\$ dig pool.ntp.org +short 162.159.200.1 178.215.228.24 154.51.12.220 87.251.32.230

Client #2 :~\$ dig pool.ntp.org +short 158.101.216.150 45.138.55.62 185.51.192.63 185.224.145.68

Client #1 :~\$ dig pool.ntp.org +short 162.159.200.1 178.215.228.24 154.51.12.220 87.251.32.230

Client #2 :~\$ dig pool.ntp.org +short 158.101.216.150 45.138.55.62 185.51.192.63 185.224.145.68

Client #1 :~\$ dig pool.ntp.org +short 162.159.200.1 178.215.228.24 154.51.12.220 87.251.32.230

Client #2 :~\$ dig pool.ntp.org +short 158.101.216.150 45.138.55.62 185.51.192.63 185.224.145.68

Evaluating the importance of the NTP Pool

- Why would you trust your clocks to volunteers?
- You can use for free:
 - Big tech (Google, Cloudflare, Meta, etc.)
 - Big gov labs (NIST, USNO)
- Is the NTP Pool popular at all?

Approach:

- Get traffic metrics from each service and compare
 - Cannot be done: many parties would not share data
 - Alternative: analyze Root DNS traffic

- Why would you trust your clocks to volunteers?
- You can use for free:
 - Big tech (Google, Cloudflare, Meta, etc.)
 - Big gov labs (NIST, USNO)
- Is the NTP Pool popular at all?

Approach:

- Get traffic metrics from each service and compare
 - Cannot be done: many parties would not share data
 - Alternative: analyze Root DNS traffic

- Why would you trust your clocks to volunteers?
- You can use for free:
 - Big tech (Google, Cloudflare, Meta, etc.)
 - Big gov labs (NIST, USNO)
- Is the NTP Pool popular at all?

Approach:

- Get traffic metrics from each service and compare
 - Cannot be done: many parties would not share data

Alternative: analyze Root DNS traffic

Root Servers relation with NTP clients

- 13 Root Server "Letters"
 - 1844 individual servers
 - Ran by 12 operators
 - root-servers.org
- They see a fraction of **global DNS traffic**
 - that's why we use it to infer NTP popularity
 - some caveats (see paper)

Clients and Root Server Traffic

Figure 1: Time servers domain name resolution for time.apple.com

Root DNS traffic analysis

- We analyze Root DNS Traffic
 - 2017 (2 days)
 - 2022 (2 days)
 - DITL datasets
- We analyze DNS query names
 - pool.ntp.org
 - time.apple.com

Provider	Server Name				
Apple	$\{time,time[1-7],time.euro,time.asia\}.apple.com$				
Cloudflare	time.cloudflare.com				
Facebook	$\{time, time[1-5]\}$.facebook.com				
Google	$\{time, time[1-4]\}$.google.com, time.android.com				
Microsoft	time.windows.com				
NIST	${time, time-[a, b, c, d, e]}$ -				
	$[g,wwv,b]$.nist.gov, $\{utcnist[1-2]\}$.colorado.edu				
NTP Pool	*.pool.ntp.org				
Ubuntu	ntp.ubuntu.com				
USNO	$\{u, tock, ntp2\}.usno.navy.mil$				
VNIIFTRI	ntp[1–4].vniiftri.ru,ntp[1-2].niiftri.				
	irkutsk.ru,vniiftri[,2].khv.ru				
Rest	137 NTP servers				

 Table 1: Evaluated Time Providers

Root DNS traffic results

The NTP Pool is the most popular time service on the Internet

- Why?
 - 20+ years
 - Many vendors use it

Root DNS traffic results

The NTP Pool is the most popular time service on the Internet

- Why?
 - 20+ years
 - Many vendors use it

Root DNS traffic results

The NTP Pool is the most popular time service on the Internet

- Why?
 - 20+ years
 - Many vendors use it

- If the NTP Pool is the most popular time service, then:
 - 1. How does it **decide** what NTP servers are assigned to each client?
 - 2. Are there any **issues** with this process?
- No previous work addressed it

NTP Pool client-server mapping

How the NTP Pool maps:

- The NTP Pool uses GeoDNS
 - customized, open DNS software
- Source code analysis?
 - No info about the servers
- Alternative: measurements
 - get lots of clients
 - measure from them

Measuring client-server mapping

- We got 9.2k vantage points
 - they are like real clients
 - from 166 countries
 - Ripe Atlas probes (thanks tons!)
- Run for 24h, every **5min**
- Query the NTP Pool DNS servers
 - dig 2.pool.ntp.org
- Analyzed number of NTP servers seen per atlas probes (clients)

From 3000 + IPv4 Servers:

- 10% of clients are assigned up to 12 NTP servers (IPv4)
- Majority fewer than < 100
- 40% are assigned with > 100

Some clients are more *equal* than others

Why?

Figure 2: CDF of NTP servers seen per Atlas VP.

Understanding mappings by emulating NTP Pool DNS

- 1. Get GeoDNS \checkmark
 - their DNS software
 - need zone file \bigstar : GeoDNS input
- 2. Reverse-engineered its zone file
 - Get 3k+ NTP servers from previous measurement
 - Get their metadata from Pool site
 - Populated our zone file
- 3. Reproduce previous measurements
- 4. Compared results

Example of NTP server

Category		$\# \mathbf{VPs}$	$\#\mathbf{Zones}$
Equal	${\rm Emulation}={\rm Ground}\;{\rm Truth}$	2,265~(23.6%)	93
More	Emulation> Ground Truth	7,282~(75.9%)	66
Fewer	${\rm Emulation} < {\rm Ground} \ {\rm Truth}$	47~(0.5%)	12

 Table 2: Validation results per zone

- More servers: our emulation sees more servers
 - how? Server weights, which we did not include
- Fewer: our emulation sees fewer servers
 - Reason: mappings can change dynamically
 - Bad servers get kicked out
 - They fall back to their continent zone

NTP Pool monitoring system

Server eviction observed in the wild:

Figure 3: NTP servers per DNS response from VP 17580

Eviction observed in the wild:

1. Client assigned to 1 NTP server (Guernsev zone has 1 server)

Figure 4: NTP servers per DNS response from VP 17580

Eviction observed in the wild:

- 1. Client assigned to 1 NTP server (Guernsey zone has 1 server)
- 2. Server score drops below 10
 - scores shown on NTP Pool page

Figure 5: NTP servers per DNS response from VP 17580

Exiction observed in the wild.

- 1. Client assigned to 1 NTP server (Guernsev zone has 1 server)
- 2. Server score drops below 10
 - scores shown on NTP Pool page
- 3. Client now assigned to 4 diff NTP servers per query
 - Guernsev zone is empty, thus fallback to continent (europe zone)

Figure 6: NTP servers per DNS response from VP 17580

NTP Pool monitoring system

Eviction observed in the wild:

- 1. Client assigned to 1 NTP server (Guernsey zone has 1 server)
- 2. Server score drops below 10
 - scores shown on NTP Pool page
- 3. Client now assigned to 4 diff NTP servers per query
 - Guernsey zone is empty, thus fallback to continent (europe zone)
- 4. Scores improve, and server is readmitted
- 5. Client assigned to one server again

Figure 7: NTP servers per DNS response from VP 17580

Confirming mappings with GeoDNS logs

Example:

- IP address from Israel
- The client can go to three zones: Israel, Asia or @
- This client was mapped to Israel Israel's il
- In short: GeoDNS maps clients to their countries
 - based on IP geolocation (Maxmind)
 - if empty, then continent zone
 - (some cases to global zone)

```
GeoDNS log files (our setup)
"Time": 1626941639825507800,
"Origin": "2.pool.ntp.org.".
"Name": "2.pool.ntp.org.",
"Qtype": 1.
"Rcode": 0.
"Answers": 2.
"Targets": ["il", "asia", "0"],
"LabelName": "il".
"RemoteAddr": "132.64.6.1".
"ClientAddr": "132.64.6.1/32".
"HasECS": false
```

NTP Pool mappings revealed

- Gray: clients served by NTP servers from their country
- Blue: clients served by NTP servers from their continent
- Orange: clients served by all NTP servers
 - Antarctica, South Sudan

Mapping Implications

NTP Pool mappings cause inequality

Figure 8: Client-server mappings

Figure 9: NTP servers assigned per country

- US clients served by > 500 servers \checkmark
- Egypt, Israel, Nigeria and other 24 countries = only 2 servers X
 - the Pool has 3k + servers
 - Why such restrictive mappings? It creates this inequality

NTP Pool inequality: Internet users per NTP server

Figure 10: Client-server mappings

Figure 11: Million Internet users per NTP server

- Users density shows clear inequality
- China, India, Mexico, Nigeria, Egypt: overloading servers

Mappings: security implications

- Countries in blue are vulnerable to attacks
 - One server can **monopolize ALL traffic** from NTP Pool clients
 - See Guernsey eviction case
- Easy to do time-shift attacks
 - These attacks have been demonstrated before
- It affects 260M Internet users

Figure 12: Client-server mappings

Introduction

Evaluating the importance of the NTP Pool

NTP Pool client-server mapping

Mapping Implications

Discussion with Operators

Conclusions

Discussion with Operators

- We reached out to the NTP Pool operators
- They pointed main reason for restrictive mappings:
 - 1. reduce the risk of assymetric routing
 - 2. minimize packet loss
- But most Internet paths are asymmetrical already
 - NTP assumes symmetric paths (latency wise)

We run experiments from undeserved countries for a week

NTP Server	Cloudflare	Africa	Asia	Europe	North Am.	South Am.
# Atlas Probes	131	130	130	130	130	90
Countries	21	21	21	21	21	16
Valid Queries	36,501	34,835	$33,\!145$	35,763	35,918	$21,\!540$
Avg. Offset (s)	1.96	1.97	1.78	1.97	2.03	1.66
Med. Offset (s)	0	0	0	0	0	0

Table 3: Evaluating NTP servers from clients located in clients only served by Cloudflare

Evaluating NTP servers from underserved countries to all continents

Figure 13: Unanswered queries (%), per NTP server

Figure 14: Unanswered queries (%), per NTP server, for each Atlas VP.

- 90% of our clients saw no packet loss
- South American server had most issues, but not with all clients
- These mappings can be relaxed

36

Introduction

Evaluating the importance of the NTP Pool

NTP Pool client-server mapping

Mapping Implications

Discussion with Operators

Conclusions

- 1. Show that the NTP Pool is the most popular time provider
- 2. Demonstrate how the NTP Pool maps clients to servers
- 3. Predict mappings for all clients and show that they:
 - $\bullet\,$ are too restrictive
 - create unfair server distribution
 - creates unnecessary risk
- 4. Discussed findings with NTP Pool operators
 - proposed solutions

- The NTP Pool is essential in Internet time keeping
- It needs some adjustments
- It has been operating for 20 years
- We thank all NTP Pool volunteers for their work and resources
 - they do it on their spare time
 - maybe the only fully volunteer run service on the Internet

