RSSAC047 Study

By SIDN Labs and NLnet Labs In collaboration with Verisign and ISC

Agenda

- Background
- Motivation
- Goals
- Approach
- Results
 - \circ Code review
 - Deployment
 - Availability metric and measurements
 - Independent measurements
 - Publication delay metric and measurements
- Recommendations
- Conclusions

RSSAC047

- Two versions: Current version RSSAC047v2 from 1 February, 2022
- Presents a set of metrics for the DNS root servers as well as for the RSS
 - <u>availability</u>, response latency, correctness, <u>publication latency</u>
- Initial implementation
 - https://github.com/icann/root-metrics
 - implements the measurements defined in RSSAC047
 - runs and collects the measurements
 - generates reports

Motivation

- Reports from the initial implementation raised some eyebrows:
 - On multiple occasions, the RSS did not meet the availability threshold of 99.999%
 - 2) In May 2024, C-Root had a high publication delay but the reports did not show anything unusual for the publication delay metric of C-Root

Goal

- 1) Evaluate whether the timeouts reported by the initial implementation were actually caused by sites of the RSIs
- 2) Evaluate why the reports by the initial implementation did not pick up on the publication delay at C-Root in May 2024

Approach

- Analyse whether the measurement results were influenced by the initial implementation:
 - by studying the source code
 - by studying the reported timeouts
- Analyse whether we can independently confirm the reported timeouts with RIPE Atlas measurements
- Run the initial implementation and analyse the reported measurements
- Analyse whether the metric to calculate the publication delay is sufficient to identify the publication delays

Results: Code review

Code review

- Initial implementation open source: <u>https://github.com/icann/root-metrics</u>
- Are there implementation specific aspects that impact reported results?
- Aspects:
 - Usability
 - Ran our own deployment of the initial implementation
 - Code organization
 - future proof design and the setup of the code bse
 - Code quality
 - craftsmanship, consistency in coding practice and general tidiness
 - Code readability
 - the mechanisms in place to assess and guarantee correctness
 - Security and privacy
- Assess expectations enumerated in the second recommendation of section 8 of RSSAC047v2 (for transitioning from initial to official implementation)

Code review - conclusions

- The initial implementation is a one-on-one thorough and of solid quality literal implementation of the measurements and metric calculations from RSSAC047
- We did not find any implementation specific aspects that would impact results
- We did find improvements for RSSAC047:
 - Coordinated removal of measurement results (to prevent disk space full)
 - Separate initial deployment from initial implementation
 - No hardcoded data (currently root server IP addresses)
 - Publication Latency metric calculation *was* wrong
 - RSS response latency calculation *was* wrong
 - Unit tests for measurements and metric calculations
- Not all expectations from RSSAC047 section 8 recommendation 2 are met, so the initial implementation cannot transition into the official implementation

Code review - some more observations

- RSSAC047 Section 8 Recommendations
 - 1. A list of expectations before initial implementation becomes official implementation
 - No equal distribution of vantage points
 - No reports are publicly available (implementation is unfinished)
 - List of vantage points is not publicly available
 - 2. Insight learned from the implementation will inform future revisions of the report
 - Already worked for version 2
 - We have feedback for version 3

Results: Initial implementation deployment

Deployment of the initial implementation

- 20 measurement vantage points (VPs)
 - not evenly distributed over regions (see RSSAC047v2 3.2)
- 1 collector
- Performs measurements every 5 minutes
- Coverage:
 - 253 out of 1,501 sites seen in January 2024 (16,86% coverage)
 - Coverage of individual RSIs varies between 7.54% and 100%
 - 69% of all sites are only reached by one VP at once
- Traceroute measurements:
 - One traceroute measurement towards each IP per VP and measurement interval
 - Between 51.25% (IPv6) and 61.14% (IPv4) successful
 - 9 hops between VP and site (median)

Results: Availability metrics

Availability measurements: Failed tests

Month	IP Version	Transport	Availability
2023 July	4	UDP	99.997%
2023 August	4	UDP	99.992%
	6	UDP	99.992%
2023 September	4	UDP	99.997%
	6	UDP	99,996%
2023 October	4	UDP	99.993%
	6	UDP	99,987%
2023 November	4	UDP	99.986%
	6	UDP	99,984%
2023 December	4	UDP	99,996%
	6	UDP	99,996%
2024 January	6	UDP	99.996%
2024 March	6	UDP	99.844%

Months in which the RSS did not meet the 99.999% availability threshold

Availability measurements: Timeout characteristics

• 84.65% of timeouts lasted for one measurement interval (max 5 minutes)

- Timeouts not evenly distributed across RSIs
- Timeouts not evenly distributed across sites of RSIs

• Timeouts not evenly distributed across VPs

Timeouts per VP, RSI and IP version

Timeouts per VP, RSI and IP version

- 98.35% of all timeouts were only observed by one single vantage point
- Concurrent timeouts:
 - 26.16% same VP, same measurement interval, same IP version (thus different RSI)
 - 37.32% same VP, same measurement interval
 - 3 VPs have concurrent timeouts more than 50% of the time they observed a timeout

- 98.35% of all timeouts were only observed by one single vantage point
- Concurrent timeouts:
 - 26.16% same VP, same measurement interval, same IP version (thus different RSI)
 - 37.32% same VP, same measurement interval
 - 3 VPs have concurrent timeouts more than 50% of the time they observed a timeout

- 98.35% of all timeouts were only observed by one single vantage point
- Concurrent timeouts:
 - 26.16% same VP, same measurement interval, same IP version (thus different RSI)
 - 37.32% same VP, same measurement interval
 - 3 VPs have concurrent timeouts more than 50% of the time they observed a timeout
- Routing loops:
 - During 3.39% of the timeouts the traceroute terminated because of a loop

- 98.35% of all timeouts were only observed by one single vantage point
- Concurrent timeouts:
 - 26.16% same VP, same measurement interval, same IP version (thus different RSI)
 - 37.32% same VP, same measurement interval
 - 3 VPs have concurrent timeouts more than 50% of the time they observed a timeout
- Routing loops:
 - During 3.39% of the timeouts the traceroute terminated because of a loop

- Motivation:
 - impossible to determine the cause of a timeout for certain after the fact
 - use RIPE Atlas measurements to understand if also others have observed the timeout
 - No: likely problem at the VP
 - Yes: likely problem at the RSI
- Between 2023-11-09 and 2024-04-03
- Filter probes to improve reliability of the measurements
- RSI site coverage: 65.76%

- Measuring availability:
 - Number of probes that reached a site per 5 minutes (X)
 - Identify decrease in probes reaching a site by:
 - Calculating mean 12 hours before and after the timeout (μ)
 - Calculating the standard deviation (σ)
 - Significant decrease in reachability, when:
 - $X < \mu 3\sigma$ (conservative approach)
 - $X < \mu 2\sigma$ (liberal approach)
- Decrease reachability at Atlas correlates with timeout when:
 - decrease appears max 5 min before or 5 min after the timeout

Example of a correlated timeout with RIPE Atlas

- For 87.48% of the timeouts we could find corresponding Atlas measurements
 - For these timeouts, we could identify a decrease in reachability in
 - 2.10% of the cases (conservative threshold)
 - 11.97% of the cases (liberal threshold)

- 3 classes
 - VP problem
 - Network problem
 - Site problem
- Differentiate between *likely* the root cause and *very likely* the root cause

- VP problem
 - *Very likely* the root cause, when:
 - 1) The timeout **has not been observed** by another vantage point at the same time, and
 - 2) the vantage point **has observed** another timeout at the same time, and
 - 3) the timeout does not coincide with a traceroute measurement that resulted in a loop, and
 - 4) the timeout **could not be correlated** with a drop in reachability with low confidence.
 - *Likely* the root cause, when:
 - all the above criteria hold, expect 2)

- RSI problem
 - Very likely the root cause, when:
 - 1) The vantage point **has not observed** another timeout at the same time, and
 - 2) The timeout does not coincide with a traceroute measurement that resulted in a loop, and
 - **3**) The timeout **could be correlated** with a drop in reachability **with high confidence**.
 - *Likely* the root cause, when:
 - 1) The vantage point **has not observed** another timeout at the same time, and
 - 2) The timeout does not coincide with a traceroute measurement that resulted in a loop, and
 - **3**) The timeout **could be correlated** with a drop in reachability **with low confidence**.

- Network problem
 - *Likely* the root cause, when:
 - 1) There exists a traceroute measurement towards a site of an RSI that resulted in a routing loop at the time of the timeout, and
 - 2) there does not exist a traceroute measurement towards a site of an RSI that resulted in a routing loop one measurement interval before the timeout, and
 - **3**) the timeout **could not be** correlated with a drop in reachability with low confidence.

Problem location	Likely	Very likely
Measurement vantage point	81.3%	19.1%
Network path	4.3%	-
RSI	9.6%	1.4%
Unknown	4.8%	79.5%

Problem location	Likely	Very likely
Measurement vantage point	81.3%	19.1%
Network path	4.3%	-
RSI	9.6%	1.4%
Unknown	4.8%	79.5%

• 7 vantage points with > 20% than timeouts classified as VP problems

Availability measurements: Adjusted root server metrics

 Calculating RSS availability, adjusted by classified timeouts:

		Availability		
Month	IP version	Default	Low Confidence	High Confidence
2023-12	v4	99.995848	100.000000	100.000000
	v6	99.995920	100.000000	100.000000
2024-01	v4	99.999160	100.000000	100.000000
	v6	99.995519	99.999650	99.999650
2024-02	v4	99.999467	100.000000	100.000000
	v6	99.999163	99.999848	99.999848
2024-03	v4	99.999638	100.000000	100.000000
	v6	99.844015	99.998117	99.998117

Availability measurements: Adjusted root server metrics

- Calculating RSS availability, adjusted by classified timeouts:
 - RSS meets threshold 7 out of 8 times
 - 2024-03 v6 likely caused by missing RIPE Atlas measurements

		Availability		
Month	IP version	Default	Low Confidence	High Confidence
2023-12	v4	99.995848	100.000000	100.000000
	v6	99.995920	100.000000	100.000000
2024-01	v4	99.999160	100.000000	100.000000
	v6	99.995519	99.999650	99.999650
2024-02	v4	99.999467	100.000000	100.000000
	v6	99.999163	99.999848	99.999848
2024-03	v4	99.999638	100.000000	100.000000
	v6	99.844015	99.998117	99.998117

Availability measurements: Takeaways

- Between 19.1% and 81.3% of timeouts are caused by VP or the network
- Between 1.4% and 9.6% of all timeouts are caused by the RSI

 \rightarrow RSS meet the availability threshold most of the time

Results: Independent measurements

Independent measurements

- Goals:
 - Test initial implementation on a larger scale
 - Test possible extensions
- Setup:
 - 17 vantage points
 - 1 month test period
- 2 extensions:
 - Non-DNS related measurements
 - Additional ICMP based monitoring of VPs

Independent measurement results

- Deployment on multiple vantage points easy
- Availability on par with or lower than reported by initial implementations
- 3 vantage points reported 48.2% of the timeouts
- 54.5% of the timeouts on IPv4 correlated with failed traceroute measurements to public DNS services of Google and Cloudflare
- 41.0% of the timeouts on IPv4 and 9.4% of the timeouts on IPv6 correlated with ICMP based timeouts

Independent measurement conclusions

- At least 20.85% of the timeouts observed by our deployment are not caused by the servers of the RSS
- Additional measurements can give some additional insights

Results: Publication delay metrics

Publication Delay: Measurements by the initial implementation

- In May 2024, 74 out of 85 zones published by C-Root were on time (not more than 65 minutes late)
- 3 zones late for more than 65 minutes
- 8 zones not observed at all

Publication Delay: Measurements by the initial implementation

- In May 2024, 74 out of 85 zones published by C-Root were on time (not more than 65 minutes late)
- 3 zones late for more than 65 minutes
- 8 zones not observed at all

 \rightarrow Initial implementation has picked up on the delayed zone updates

Publication Delay: Calculating the RSI publication delay

• In a nutshell:

- For each zone and RSI, measure the time between zone publication and the time the zone has been fully deployed
- Calculate the median across all values
- The initial implementation calculated the metric in accordance with RSSAC047v2*

 \rightarrow The metric is not sufficient to pick up even large delays in zone publication

* The initial implementation contained a bug, but this did not affect the results in this case

Publication Delay: Flaws in the RSI metric

- Does not take zones into account that are never published
- Median is not sensitive enough to have picked up delays at C-Root
- Suggestions:
 - Take missing zones into account, e.g. by measuring time between missing zone was first published and the time the next zone was seen first
 - Use the mean instead of the median

Publication Delay: Modified RSI metric

RSI	Measurements	Median publication delay (s)	Adjusted publication delay (s)
Α	85	0.0	21.2
В	85	0.0	17.6
<u>c</u>	<u>85</u>	<u>0.0</u>	<u>11,523.5</u>
D	85	0.0	17.7
E	85	0.0	28.2
F	85	0.0	24.7
G	85	0.0	14.1
н	85	0.0	14.1
I	85	0.0	17.6
J	85	0.0	3.5
к	85	0.0	17.6
L	85	0.0	35.3
М	85	0.0	17.6

Publication Delay: Modified RSI metric

 \rightarrow RSS publication delay meets threshold (35 minutes) in both cases

RSI	Measurements	Median publication delay (s)	Adjusted publication delay (s)
Α	85	0.0	21.2
В	85	0.0	17.6
<u>c</u>	<u>85</u>	0.0	<u>11,523.5</u>
D	85	0.0	17.7
E	85	0.0	28.2
F	85	0.0	24.7
G	85	0.0	14.1
н	85	0.0	14.1
I	85	0.0	17.6
J	85	0.0	3.5
к	85	0.0	17.6
L	85	0.0	35.3
М	85	0.0	17.6

Recommendations and conclusion

Recommendations

- Additional monitoring of VPs
 - external: monitoring, e.g. from the collector
 - internal: DNS independent connectivity tests
- More VPs
 - timeout observed from multiple VPs generate stronger signal
 - Open question: How many VPs is enough?

Conclusions

Put bluntly:

The initial implementation reported something that didn't happen and didn't report something that did happen.

- Availability of the RSS very likely higher than reported
- Metric to calculate the publication delay not sensitive enough
- Measuring the availability of a highly distributed system like the RSS externally is challenging
- More VPs can increase the reliability of the measurements

Questions? Comments?

Contact:

Moritz Müller (SIDN)

Marco Davids (SIDN)

Willem Toorop (NLnet Labs)

moritz.muller@sidn.nl marco.davids@sidn.nl willem@nlnetlabs.nl

