

DDoS Clearing House for Europe (Task 3.2) 3rd CONCORDIA review

Cristian Hesselman (SIDN Labs)

Partners: SIDN, UT, TI, FORTH, UZH, SURF, ULANC, CODE

Key takeaways

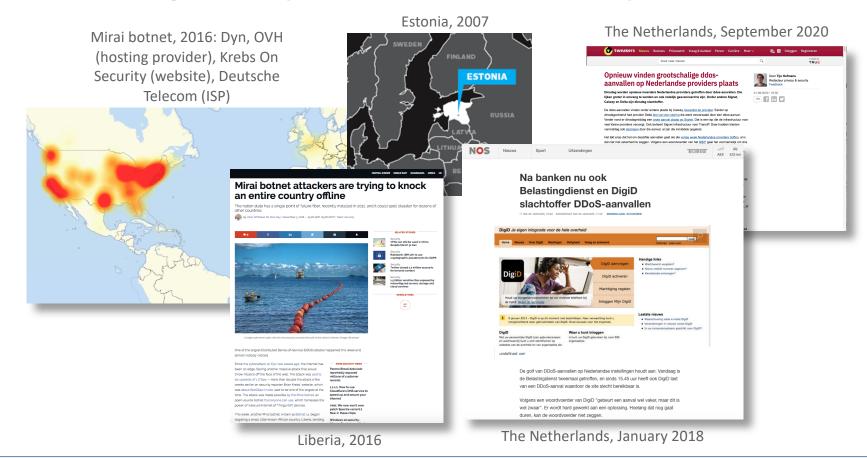
- Key achievements Y2: advanced clearing house prototype's core components and supplementary services (videos)
- Y3 focus: (1) coupling with production systems, (2) further technical improvements, (3) publish first version of cookbook

Dutch ADC: moving to sustainable ecosystem (funding, CA)

DDoS clearing house selected for EC's Innovation Radar! (Jan 2021)

Feedback Sep 2020 Review

• "The project has made a good progress concerning the threat intelligence sharing and the DDoS clearing house platforms"



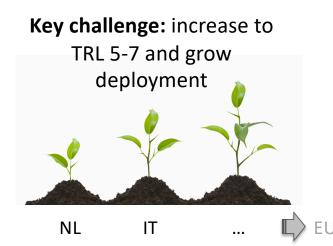
- Reached out to Multistate ISAC/Center for Internet Security, no luck yet
- However, an ADC is different from an ISAC
 - Cross sector nature (ISACs are single sector)
 - Includes facilities for real-time sharing of DDoS measurements (fingerprints)
 - Includes large-scale collaborative DDoS drills
 - Focused on DDoS attacks rather than all kinds of threats
 - Flexible concept that works for any group of orgs, ISACs or other

High-impact DDoS Examples

DDoS Attacks and Digital Sovereignty

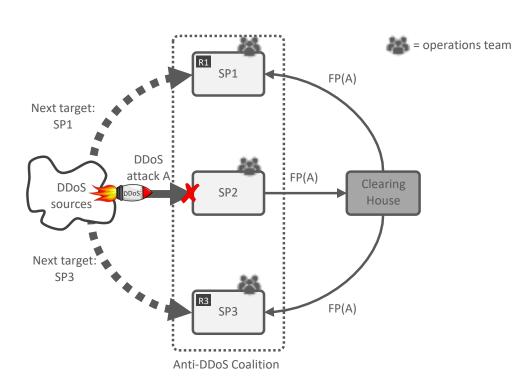
- Increased dependency on online services, especially after Covid
- Risk: increased impact of DDoS attacks, reduces EU's digital sovereignty
 - Loss of control over critical processes
 - Safety risk due to interaction with physical space (cf. WP2)
 - Increased awareness at the policy level

House of Representatives of The Netherlands,
October 2020


- Key problem: limited access to and sharing of DDoS data
 - Lowers response time and learning because of limited victim-specific view
 - Reduces innovation of processes and systems

T3.2 objective

- Pilot a DDoS Clearing House with European industry for Europe to proactively and collaboratively protect European critical infrastructure against DDoS attacks
- Learn how to bridge multidisciplinary gap to deployment, more than tech!
- Key outputs: pilots in NL >> IT, DDoS clearing house blueprint



DDoS Clearing House Concept

- Continuous and automatic sharing of "DDoS fingerprints", buys providers time (proactive)
- Extends DDoS protection services that critical service providers use and does not replace them
- Generic concept: per Member State, per sector, per business unit, etc.

Fingerprint Example

```
<snip>
 "dns_qry_type": [
   255
  "ip_proto": [
   "UDP"
 "highest_protocol": [
   "DNS"
  "dns_qry_name": [
   "evil.com"
 "eth_type": [
   "0x00000800"
 ],
 "srcport": [
   53
 "fragmentation": [
   false
  "tags": [
   "DNS",
   "DNS_QUERY",
   "AMPLIFICATION"
"start_time": "2013-08-14 23:32:40",
"total_dst_ports": 1043,
"avg_bps": 28406714,
"total_packets": 19183,
"total_ips": 393,
}
<snip>
```

CONCORDIA 3rd Review, 10.02.2021

Clearing House increases Digital Sovereignty

- Increased insight of potential victims into DDoS attacks from their own narrow view to an ecosystem-wide view
- Increased control because the new insights give organizations more grip on how to handle DDoS attacks and the requirements for their DDoS mitigation facilities (their own or those of a contracted third party)
- ADCs also build up a joint pool of expertise independent of particular DDoS mitigation providers through drills and best common practices

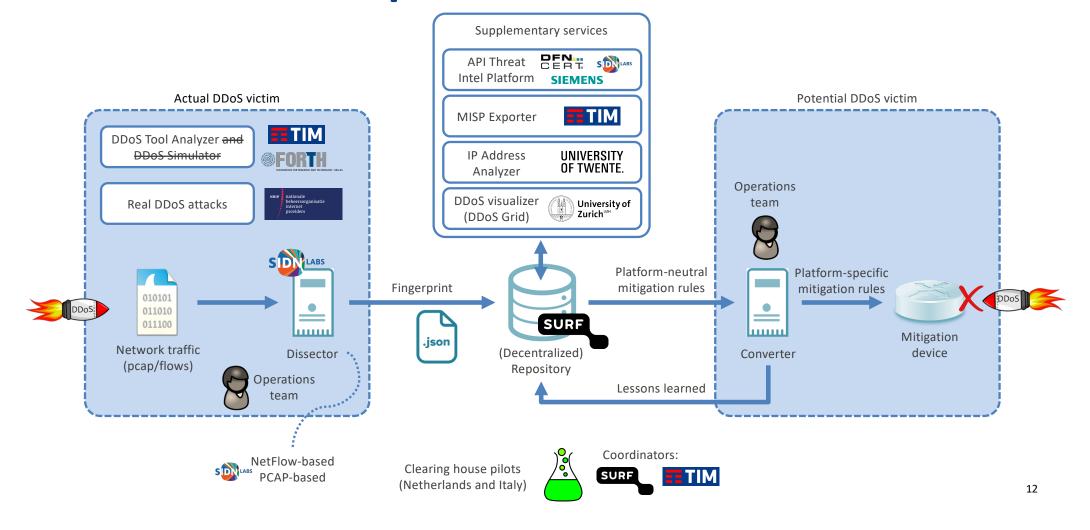
Dutch National Anti-DDoS Coalition

CONCORDIA partner

UNIVERSITY OF TWENTE.

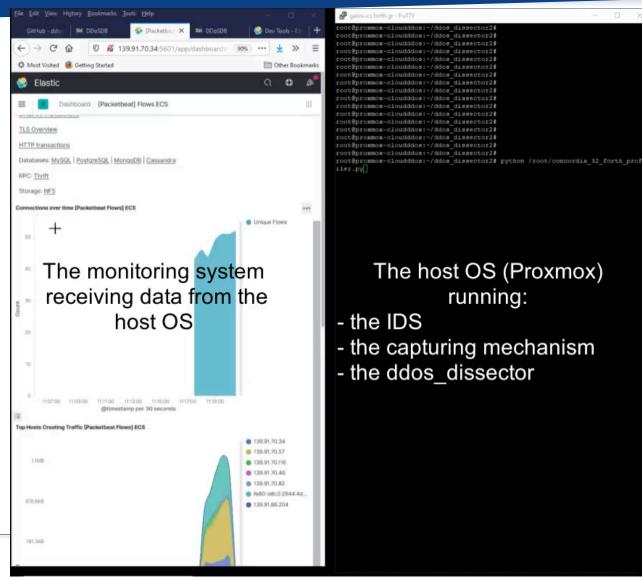
Status Dutch Anti-DDoS Coalition

- Members committed to a more sustainable model (Dec 2020)
- Approved fee-based budget (EUR 114K total)
- Structure of WGs, clearing house operator and software developer
- Consortium agreement under development

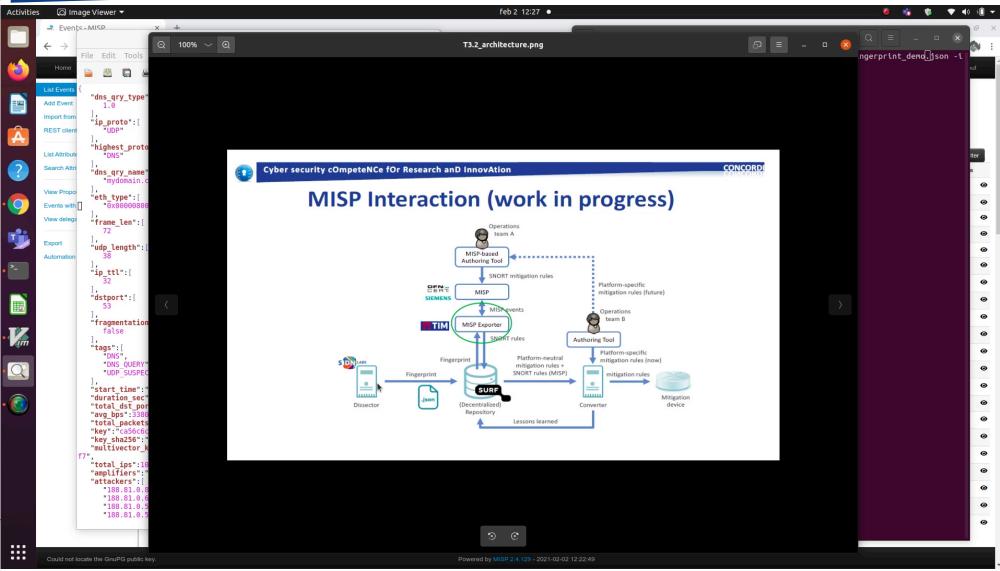


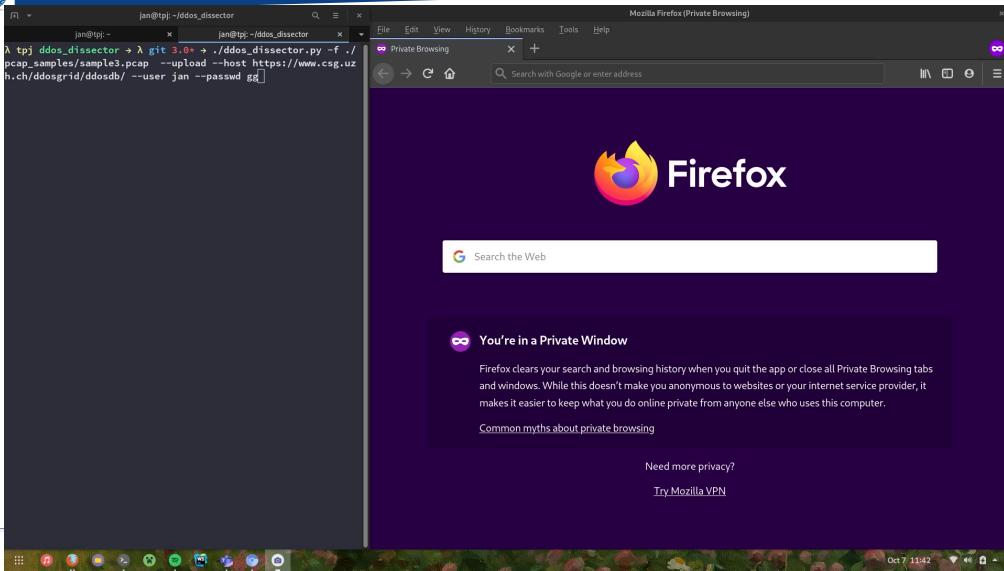
Core team governing the Dutch ADC

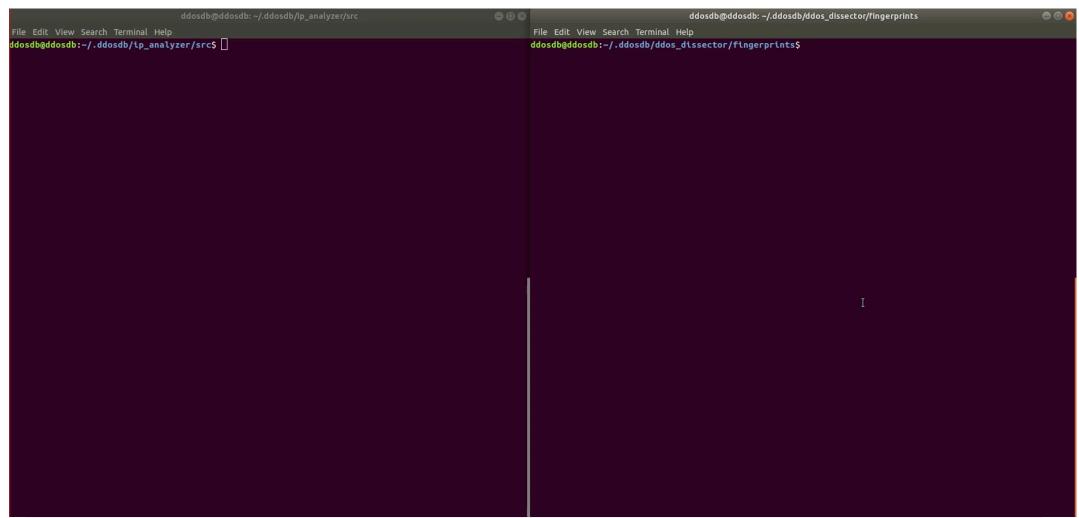
Main Components and Data Flows



Component Maturity

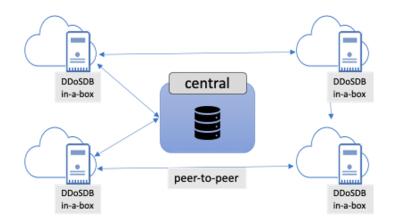

	Name	Function	Maturity
	Dissector	Generate DDoS fingerprints based on PCAP files and flow data	High
	DDoSDB	Insert, update, search, and retrieve DDoS fingerprints	High
	Converter	Generate mitigation rules based on DDoS fingerprints	Low
Demo #3	DDoS Grid	Dashboard for the visualization of DDoS fingerprints	High
Demo #4	IP Address Analyzer	Enriches fingerprints with details about IP addresses involved in an attack, based on measurements	Low
Demo #1	DDoS Tool Analyzer	Generate DDoS fingerprints of tools used to launch DDoS attacks (e.g., Hulk, hping3, ddos_sim)	Low
Demo #2	MISP Exporter	Generate MISP events based on DDoS fingerprints	Low
	Traffic generator	Generation of DDoS fingerprints using a TIM's DDoS traffic simulator	Low

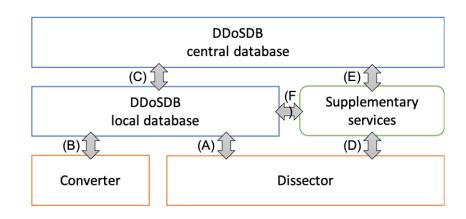



Demo: DDoS Grid (01:17) CONCORD

Demo: IP Address Analyzer (02:08)

CONCORDIA


Advancements of components in Y2


- Dissector: new fingerprint generation algorithms, support for netflow
- DDoSDB: added fingerprint synch between DBs, improved web interface
- Converter: investigating how to incorporate it into MISP
- MISP exporter: first version that maps fingerprints to MISP events
- Tool analyzer: fingerprints nmap, hping3, ddos_sim powered attacks
- DDoS grid: interactive analysis and generation of fingerprints
- IP address analyzer: first basic implementation

Architecture advancements in Y2

- Refined clearing house overall architecture (components, interfaces)
- Introduced DDoS clearing house-in-a-box, including auto-update
- Coupled components through APIs

Dissemination in Y2

- 14 external and internal presentations
- External talks at the Dutch ADC, ICANN68, and ETNO, amongst others
- 6 blogs, 1 paper

Lessons learned in Y2

- Modular design is key to decentralized architecture, our demo-driven way of working, and to compensate for Covid
- The Dissector needs to support multiple types of traffic capturing formats (PCAP, netflow) because of differences in operators' networks
- MISP might be a good candidate for sharing fingerprints (e.g., supports communities and DB-synch), but is also limited in filtering rules and fullt representing fingerprints

Outlook Y3

- Couple with production systems of partners in the Dutch ADC, initially at our partner NBIP (Dutch ADC)
- Further mature the clearing house's components, such as
 - Extend the Dissector with additional fingerprint generation modules
 - Develop a MISP extension for authoring and distributing DDoS filtering rules
- First published version of the DDoS clearing house cookbook (e.g., as a paper for the Journal on Internet Services and Applications)

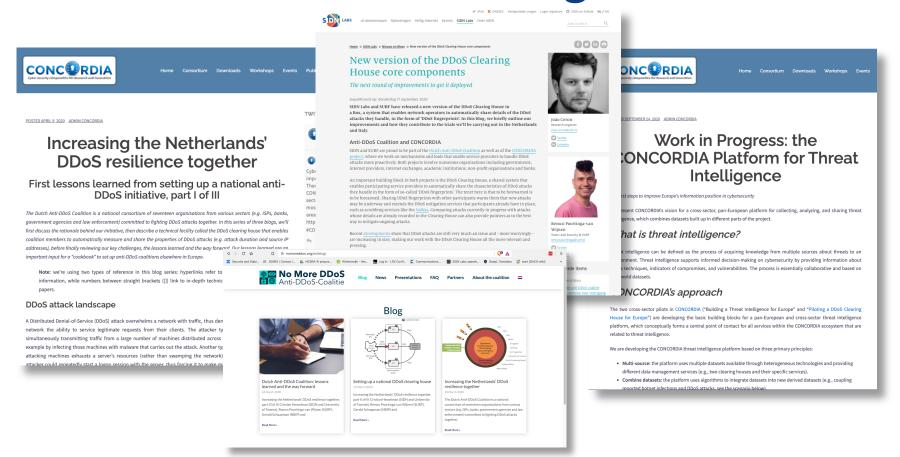
Collaboration Y3

- T1.2 (Network-Centric Security): for research that might be required to develop new types of Dissectors or to measure attackers' infrastructure
- T2.1 (Telco Pilot) and T2.3 (Charging Pilot): study how the Clearing House can help mitigating DDoS attacks on these infrastructures
- T3.1 (Building a Threat Intelligence for Europe): to refine CONCORDIA Treat Intelligence Platform and interaction with the DDoS Clearing House
- T4.2 (Legal aspects): to develop a "code of engagement" document for organizations to join the DDoS Clearing House as it continues to evolve.

Outlook Y4 (project end)

- Pilot in the Netherlands: 3+ member organizations of the Dutch ADC sharing fingerprints (inter-organization)

 No More DDoS Anti-DDoS-Coalitie
- Pilot in Italy: 3+ TI departments sharing fingerprints (intra-organization)
 - Security Lab, internal SOC, anti-DDoS team



- Optionally with other orgs in Italy (e.g., universities)
- Cookbook and tech report combined in a peer-reviewed paper

Further reading

Contact

Research Institute CODE Carl-Wery-Straße 22 81739 Munich Germany

contact@concordia-h2020.eu

Follow us

www.concordia-h2020.eu

www.twitter.com/concordiah2020

www.facebook.com/concordia.eu

www.linkedin.com/in/concordia-h2020

www.youtube.com/concordiah2020

Dutch Anti-DDoS Coalition: https://www.nomoreddos.org/en/

Clearing house on GitHub: https://github.com/ddos-clearing-house/

Cristian Hesselman (T3.2 lead) cristian.hesselman@sidn.nl @hesselma +31 6 25 07 87 33