Old but Gold: Prospecting TCP to Engineer and Real-time Monitor DNS Anycast

Giovane C. M. Moura¹ John Heidemann² Wes Hardaker² Jeroen Bulten³ João Ceron¹ Cristian Hesselman^{1,4}

1: SIDN Labs, 2: USC/ISI, 3: SIDN, 4:University of Twente

OARC 34 Virtual Conference 2021-02-04

Latency is key in DNS (but hard to measure)

- Authoritative OPs will use whatever tools to reduce latency:
 - 1. multiple NSes
 - 2. Anycast
 - 3. Peering/IXPs
 - 4. ...
- But is hard to know client's latency:
 - 1. Ripe Atlas, Thousand Eyes: good but not complete coverage
 - 2. Verfploeter [1]: requires ICMP measurements
 - · Verfploeter is ran typically daily, as it is expensive
 - Difficult to apply to IPv6 (hitlist)

What if there was a better way?

- · A method that:
 - Comes from real-clients
 - Works well with IPv6
 - Requires no extra measurements (passive only)
- Well, there is one: DNS over TCP (DNSTCP)
 - RTT measured from handshake (or takedown)
 - we've been using for 1.5 years at SIDN (.nl)
 - helped to solve several issues
 - fulfills all the above

What if there was a better way?

- A method that:
 - Comes from real-clients
 - Works well with IPv6
 - Requires no extra measurements (passive only)
- Well, there is one: DNS over TCP (DNSTCP)
 - RTT measured from handshake (or takedown)
 - we've been using for 1.5 years at SIDN (.nl)
 - helped to solve several issues
 - fulfills all the above

TCP RTT history: old but gold

- TCP RTT estimation has been used since 1996 [2]
- Widely used in passive analysis of HTTP (FB uses it [5])
- It has been applied on DNS mulitple times:
 - Roy Arends (2012)
 - Casey Deccio (2018)
 - Maciej Andzinski [3] (2019)
 - Our tech report (2020) [4]

Our contribution

So what's NEW with our work?

- extensive and comprehensive methodology validation
 - Is the TCP data representative?
 - Are the UDP and TCP latency comparable?
- acted upon the data with 4 operators (Anycast A, B, B-Root, and Google)
 - · We identify several use cases and issues
 - We manipulated BGP to fix those issues
 - We document it carefully
- use in real-time within .nl to detect anomalies
 - Route leaks

Requirements for DNS/TCP RTT

TCP traffic **MUST**:

- Provide enough coverage (spatial and temporal)
 - you know, most DNS traffic is still UDP
- 2. provide similar latency to UDP
 - so we can generalize the results

Is DNS traffic representative?

	Queries		Resolvers		ASes	
	Anycast A	Anycast B	Anycast A	Anycast B	Anycast A	Anycast B
Total	5 237 454 456	5 679 361 857	2 015 915	2 005 855	42 253	42 181
IPv4	4 005 046 701	4 245 504 907	1 815 519	1 806 863	41 957	41 891
UDP	3 813 642 861	4 128 517 823	1 812 741	1 804 405	41 947	41 882
TCP	191 403 840	116 987 084	392 434	364 050	18 784	18 252
ratio TCP	5.02%	2.83%	21.65%	20.18%	44.78%	43.58%
IPv6	1 232 407 755	1 433 856 950	200 396	198 992	7 664	7 479
UDP	1 160 414 491	1 397 068 097	200 069	198 701	7 662	7 478
TCP	71 993 264	36 788 853	47 627	4 6190	3 391	3 354
ratio TCP	6.2%	2.63%	23.81%	23.25%	44.26%	44.85%

Table 1: DNS usage for two authoritative services of .nl (Oct. 15–22, 2019).

- 5% of clients, 20% of resolvers, and 44% of ASes
- You get this for free
- Roots: 1.77–14% of TCP queries (see report [4])

Important ASes use TCP

	Anycast A	Anycast B
IPv4	4 005 046 701	4 245 504 907
from TCP ASes	3 926 025 752	4 036 328 314
Ratio (%)	98.02%	95.07%
from TCP resolvers	2 306 027 922	1 246 213 577
Ratio (%)	57.7%	29.35%
IPv6	1 232 407 755	1 433 856 950
from TCP ASes	1 210 649 060	1 386 035 175
Ratio (%)	98.23%	96.66%
from TCP resolvers	533 519 527	518 144 495
Ratio (%)	43.29%	36.13%

Table 2: Queries per Services for ASes and Resolvers that send TCP queries for .nl (Oct. 15–22, 2019).

• ASes that do TCP send most of the traffic

DNS: TCP vs UDP latency are comparable

	K-R	oot	L-Root		
	UDP	TCP	UDP	TCP	
Date	Sept 4-	-5, 2020	Sept 5-6, 2020		
Freq.	4min	8min	4min	8min	
Probes	10520	8676	10586	8989	
∩ Probes	8582		8892		
Queries	3749892	1045605	3779763	1062557	
∩ Queries	3063836	1034233	3181098	1055888	

OK, so what can we do with it?

- DNS/TCP provides enough VPs
- Has similar latency than UDP
- Measure real clients
- No costs
- Easily copes with IPv6
- Requires no extra measurements
- Can be run in real time

Prioritizing Analysis: by Site

Anycast B: IPv4 and IPv6 RTT per site

Prioritizing Analysis: by client AS

Anycast B: IPv6 queries and RTT per client AS

Problems: Distant Lands

- A client is mapped by BPG to far distant anycast sites
- Some sites have a large RTT value or spread (CDG, SIN, NRT)
- We can see that using DNS/TCP RTT

Solutions: Distant Lands (NRT)

- Causes: No presence/direct peer with Chinese ISPs
- Chinese int'l connections can exhibit congestion [6]
- Fix: site in China (OPs clients may not be confortable) or direct peer (\$)

Figure 2: Anycast B, Japan site (NRT): Top 8 querying ASes are Chinese, and responsible for 80% of queries.

Problems: prefer customer to another continent

- Common BGP policy: prefer customer
 - if AS can satisfy route via customer, so be it
- But sometimes it takes clients to another continent
- We found Comcast (US, AS7922) reaching Anycast B via GRU site (Brazil)
- We contacted the Operator; fixed with right BGP community

Figure 3: Anycast B and Comcast: RTT before and after resolving IPv6 misconfiguration.

Problem: Anycast Polarization

- We found that MS (8075) and Google (15169) had high latencies to Anycast A
- And they are the top 2 client ASes

Problem: Google Polarizided → **high latency**)

All Google Traffic was going to AMS site only: RTT 100ms

Figure 4: IPv4: Queries and Experiments from Google (AS15169) to Server A

Solution: Depolarizing traffic from Google (BGP)

- We fixed the issue with BGP manipulations
- Median latency: from 100ms to 10ms.

Figure 5: IPv4: Queries and Experiments from Google (AS15169) to Server A

Solution: Depolarizing for Microsoft

We fixed the issue with route withdraw

Figure 6: .nl Anycast A and Microsoft (IPv4): RTT before and after depolarization.

Near-real time Anycast Monitoring: Anteater

Figure 7: DNS/TCP RTT near real-time monitoring at .nl

Near-real time Anycast Monitoring: Anteater

Anteater: detecting routing leaks

Anteater: detecting routing leaks

EU Traffic went to AUS, tier1 propaged SYD annoucements

Summary

- DNS/RTT are useful for Anycast Engineering
- We show how to prioritize analysis (per site, per client)
- We use our approach in three anycast Services (Services A and B, and B-Root)
- We document Anycast Polarization, and shed latency in 90ms
- Other types of issues covered as well
- ENTRADA, open-source, automatically measures it
- We've been using it for over 1.5 year at SIDN (.nl)
- Tech report:

```
https://www.isi.edu/~johnh/PAPERS/Moura20a.html
```

References i

[1] DE VRIES, W. B., DE O. SCHMIDT, R., HARAKER, W., HEIDEMANN, J., DE BOER, P.-T., AND PRAS, A.

Verfploeter: Broad and load-aware anycast mapping.

In Proceedings of the ACM Internet Measurement Conference (London, UK, 2017).

[2] HOE, J. C.

Improving the start-up behavior of a congestion control scheme for tcp.

In *Proceedings of the ACM SIGCOMM Conference* (Stanford, CA, Aug. 1996), ACM, pp. 270–280.

References ii

[3] MACIEJ ANDZINSKI.

Passive analysis of DNS server reachability.

https://www.nic.cz/files/nic/IT_19/prezentace/12_andzinski.pdf, 11 2019.

[4] MOURA, G. C. M., HEIDEMANN, J., HARDAKER, W., BULTEN, J., CERON, J., AND HESSELMAN, C.

Old but gold: Prospecting TCP to engineer DNS anycast (extended).

Tech. Rep. ISI-TR-740, USC/Information Sciences Institute, June 2020.

References iii

[5] SCHLINKER, B., CUNHA, I., CHIU, Y.-C., SUNDARESAN, S., AND KATZ-BASSETT, E.

Internet Performance from Facebook's Edge.

In *Proceedings of the Internet Measurement Conference* (New York, NY, USA, 2019), IMC '19, ACM, pp. 179–194.

[6] ZHU, P., MAN, K., WANG, Z., QIAN, Z., ENSAFI, R., HALDERMAN, J. A., AND DUAN, H.

Characterizing transnational internet performance and the great bottleneck of china.

Proc. ACM Meas. Anal. Comput. Syst. 4, 1 (May 2020).