
User-driven Path Control through Intent-Based
Networking

1st Anne-Ruth Meijer
Multiscale Networked Systems group

University of Amsterdam
Amsterdam, The Netherlands

anneruth02@gmail.com

2nd Leonardo Boldrini
Multiscale Networked Systems group

University of Amsterdam
Amsterdam, The Netherlands

l.boldrini@uva.nl

3rd Ralph Koning
SIDN Labs

SIDN
Arnhem, The Netherlands

ralph.koning@sidn.nl

4th Paola Grosso
Multiscale Networked Systems group

University of Amsterdam
Amsterdam, The Netherlands

p.grosso@uva.nl

Abstract—The UPIN (User-driven Path verification and con-
trol in Inter-domain Networks) project aims to implement a
mechanism for a user to control the way data are traversing
the network. Here we investigates the possibilities and limita-
tions of Intent-Based Networking (IBN) for user-driven path
control. Exploring several intent translation techniques allows
us to define four main factors that influence the design of an
Intent-Based Networking approach. The level of control, level of
required knowledge, type of language, and network all influence
the design. Based on the UPIN project demo, we design two
approaches: technical-centric, which focuses on enabling Intent-
Based Networking, and human-centric, which focuses on relieving
restrictions from the expression methods for the user. Rasa is used
to create a chatbot interface for the human-centric approach. We
experiment with several configurations to discover the optimal
pipeline for our training and testing data. Results indicate an 85
percent accuracy of intent recognition and 93 percent accuracy
of entity extraction. Although the accuracy is not high enough
to allow the Intent-Based Networking implementation to make
decisions without supervision, the implementation proves to be a
viable method of expressing intents for user-driven path control.

I. INTRODUCTION

Governments and citizens depend on digital technologies
that are deeply entangled in the core structures of society
[1]. These technologies are built on the traditional Internet
architecture and inherit some of its limitations, such as the lack
user control of the network and a consequent erosion of trust
[2]. The Responsible Internet paradigm wants overcome these
problems by improving the Internet transparency, accountabil-
ity and controllability [2]. The UPIN (User-driven Path veri-
fication and control in Inter-domain Networks) project, based
on the notion of Responsible Internet, develops a framework
for users to control the behaviour of the network [3] while
integrating with the current Internet architecture. However,
providing users with a degree of control requires to support
efficient interactions between users and the network.

A method of translating desires into network level config-
urations is Intent-Based Networking (IBN) [4]. IBN allows
users to control the network behaviour without requiring
the knowledge of a network operator, even in increasingly
complex networks. Managing, for example, 5G networks could
be simplified and automated by IBN [5]. Likewise, managing
Virtual Networks (VNs) can be complex. Using Network
Virtualization, VNs can be created on top of the physical
network infrastructure to allow multiple users to use the
network independently [6]. IBN can be used to trace all the
different intents in the network and to verify whether a new
intent does not conflict with existing ones.

Our research investigates the possibilities and limitations of
an IBN approach to provide the user-network communication
required for user-driven path control. For example, this would
benefit the setup of Wide Area Network paths for large scale
scientific applications.

This paper first provides an overview of existing IBN
translation techniques and presents two possible designs based
on those techniques: a technical-centric and human-centric
method. The technical-centric method enables the use of IBN
in a UPIN project demo, while the human-centric method
expands on this to provide the user with increased freedom of
expressing intents. The human-centric method parses natural
language using Natural Language Processing and here we
investigate the performance of the adopted NLP techniques.

The rest of the paper is structured as follows. First, the
concepts of Responsible Internet and the UPIN project are
explained in section II to grasp the range of this research.
Existing research on Intent-Based Networking is reviewed in
section III. In section IV the design considerations for the
implemented approaches are clarified. The implementation of
the approaches is further detailed in section V. Last, the
experiments and results are provided in section VI before
discussing and making conclusions in sections VII and VIII.



II. RESPONSIBLE INTERNET & UPIN

The Internet has evolved to a global infrastructure support-
ing a wide range of services and products on which all com-
panies and governments depend upon [2]. This dependence is
often based on systems manufactured and operated by entities
in other countries, which generates in some circumstances
political and economical concerns. As a consequence we are
witnessing is the emergence of concerns regarding digital
sovereignty and greater attention over control of data.

The Responsible Internet has been proposed to address these
problems and provide a higher degree of trust and sovereignty
for users of the Internet [2]. The main goal is to improve the
transparency, accountability and controllability of the Internet.

Transparency provides the ability to describe the structure
and properties of a network. Two types of transparency are
identified: data and infrastructure transparency. Data trans-
parency provides knowledge on how data is processed, in-
cluding what devices it traversed and the type of devices. In-
frastructure transparency provides insights into the properties
of the infrastructure independent of the data flows.

Accountability can also be distinguished into a data and
infrastructure type. Data accountability ensures that network
operators explain the method of processing data along with
routing decisions. Infrastructure accountability guarantees that
the network operator explains the design of the infrastructure,
for example an explanation on types of software.

Controllability provides the user with the ability to specify
their expectations of the network. Based on descriptions of the
network and data processing, users can express their desire on
how the data is handled by the network. Controllability can
be established by either policy making or creating alternative
network functions, for example the ability to control paths
based on certain properties.

A. The UPIN project

The UPIN project provides the concrete implementation for
the Responsible Internet, namely transparency, controllability
and accountability for the users of the network infrastructure
[7][3].

UPIN introduces an Internet framework allowing the user
to define network behaviour. The framework utilizes existing
network paradigms, for example Software-Defined Networks,
to blend with the current Internet infrastructure [7]. The UPIN
domain is designed to work seamlessly alongside non-UPIN
enabled domains to allow a UPIN domain to be integrated in
the existing infrastructure.

The UPIN framework consists of a Domain Explorer, Path
Controller, Path Tracer, Path Verifier, and Front-end [3]. The
Domain Explorer obtains the metadata about properties of
the network, including security and environmental details. It
stores detailed knowledge on the nodes in the network. The
Path Controller is in charge of setting the forwarding rules
based on the desires of the user. The Controller is only able
to influence the nodes in its own domain. The Path Tracer
gathers measurements on the traffic in the UPIN domain. The
goal is to store important details for the possible verification.

The Path Verifier examines whether the desires of the user are
satisfied. Using tracers and the original intent of the user the
path can be verified. However, if the path traverses a non-UPIN
enabled domain the Path Verifier cannot be certain whether the
intent is satisfied over the full path. The Front-end provides a
method of communication between the user and the domain.
The work presented here relates closely to this last component
in the framework.

B. The UPIN demo

The UPIN demo is an interactive environment to demon-
strate the capabilities provided by a UPIN enabled network.

The user interacts with the network environment through
a browser-based user interface. The user is presented with
a topology, either on a map or in a schematic graph. After
logging in, the user can view which nodes data can traverse in
the network. The user can change the properties of the path to
be taken and the graph of traversed nodes changes accordingly.
The user interface communicates with the underlying network
via its back-end and through MQTT. MQTT is a publish and
subscribe protocol [8] that is used as an interface between the
demo components:

• domain agents to control each node and publish perfor-
mance information;

• an aggregator component to collect the information from
the nodes and compile a topology view for the user-
interface;

• the IBN component in we describe in Sec. V.
The front-end of the demo is implemented in JavaScript using
Snowpack [9], the back-end is implemented in Node.js and
the rest of the components using Python.

III. INTENT-BASED NETWORKING

Intent-Based Networking (IBN) provides users with the
ability to express a desire and translate said desire into network
level configurations, for example policies. IBN is based on
the concepts of intent and policies and applied in Software-
Defined Networks (SDN).

In 2017, the Internet Research Task Force (IRTF) has
published a draft document to clarify the concepts behind
IBN [4]. At the moment of writing, this document is a work
in progress. The need for this document originates from the
lack of a common understanding of the terms and concepts
that surround IBN. Earlier definitions of intent describe the
intent as a type of policy. To avoid intent and policy becoming
synonyms the working document provides definitions for both
terms [4]. The definition of policy is presented as:

“A set of rules that governs the choices in behavior
of a system” [4]

The definition of intent is presented as:
“A set of operational goals (that a network should

meet) and outcomes (that a network is supposed to
deliver), defined in a declarative manner without
specifying how to achieve or implement them.” [4]

The difference between the two terms is that intent specifies a
set of goals and outcomes, while a policy entails a set of rules.



Meaning, an intent is what a user expects and desires of the
network, without stating how the network should achieve those
expectations and desires. A policy is exactly a description
of how the network should behave. Thus, an intent can be
achieved by implementing policies.

In IBN the intent is provided about the network, in particular
a Software-Defined Network. An SDN is a network approach
that allows network operators to configure the network with
programming through open interfaces [10]. In an SDN the
control plane is separated from the data plane. This allows the
control of the network to be centralized and be implemented in
software [11][10]. SDNs are divided into three primary layers
and two interfaces. The three primary layers are the control
layer, application layer, and the infrastructure layer. The two
interfaces are Northbound and Southbound APIs. In IBN the
application layer sets the requirements of the network, but
without knowledge of how the requirements are implemented.
Through an alternative Northbound interface, the intent-based
Northbound interface, the intent of the application is translated
into a control layer configuration [11]. For the application layer
it is no longer required to understand the components of the
network. The intent is provided by the application layer and the
intent-based Northbound interface translates this into policies
understood by the network.

A. Intent-Based Networking

Intent-Based Networking is based on the notion of intent
and allows users to express intents without hardware specific
rules. To achieve this, IBN requires a method of translating
the intent along with an activation and validation phase. The
concept of IBN is visualized in Figure 1. First, a user expresses
the intent. This is translated into rules comprehensible by the
network, in other words policies. These policies are activated
and configured in the infrastructure. The network infrastructure
provides feedback to a validation phase. The activation and
validation of the intents are continuously verifying whether
the intents can be satisfied based on network-driven feedback.
The status of the intents is fed back to the user that expressed
the intent. Using this method of validation, the user intent has
to be expressed once. After the expression the intent will be
satisfied as long as the infrastructure supports it and the intent
is not changed.

B. Limited Translation Techniques

The technique to translate an intent into network config-
urations is based on the language from which it needs to
be translated. Most translation techniques provide a specific
language set that can be translated. However, some techniques
translate from plain English.

We classify all techniques that accept a limited syntax as a
limited translation technique. These techniques include ONOS
intent framework [6], [12], [13], the NEMO language [13],
[14], the NIC project [13], [15], and Nile language[16]–[18].

1) ONOS: Open Network Operating System (ONOS) has
build a framework for IBN[12]. It provides a system that
translates a previously specified intent into operations on the

Fig. 1. Visualization of the concept of Intent-Based Networking

network environment. The intent in the ONOS framework is an
object that describes the request of an application to alter the
behavior of the network. The intent can include descriptions of
network resources, constraints, criteria, and instructions. The
intent that users can express include intents already compiled
in the framework or intents added to the compiler[19].

2) NEMO: The NEtwork MOdeling (NEMO) language is
a part of the OpenDayLight framework [14]. This framework
is focused on implementing an intent Northbound interface.
NEMO provides each user with a Virtual Network (VN) space,
a private space that is managed and operated by one user. The
intent the users can express is limited by the syntax of NEMO
[14]. Using this syntax users can describe their demands about
entities of the network, including nodes, connections, and
flows. A drawback of NEMO is the lack of adaptability of
the network configurations in response to altering network
conditions [20].

3) NIC: The Network Intent Composition (NIC) project
is created by OpenDayLight [15]. The project uses an intent
Northbound interface alongside OpenDayLight Network Ser-
vice Functions and Southbound Plugins to control the physical
devices. The intent that can be provided to the Northbound
interface is limited to previously configured intents. Users can
add, remove, list, show, and compile intents in the configura-
tion of the Northbound interface.

4) Nile: The Network Intent LanguagE (Nile) acts as an
abstraction layer between natural language and a programming
language [17]. The gap between natural language and network
configuration is large, so this language is proposed to bridge
this gap. Nile is structured enough to be easily translated to
different networks, yet stays close to natural language. An
example of a Nile intent is visualized in Figure 2.

C. Natural Language Translation Techniques

Techniques that translate from natural language, for example
English, are less limited. These techniques include iNDIRA
[13], [21], Lumi [18] and BERT [13], [22].



Fig. 2. Example of a Nile intent [17]

1) iNDIRA: Intelligent Network Deployment Intent Ren-
derer Application (iNDIRA) systems implement another layer
between a user and the Northbound interface to translate
natural language from the user into network commands [21].
The technique to translate natural language is ontology engi-
neering. Ontology engineering converts the query provided by
the user into a graph representation. The specific method used
to construct the intent semantic web is a Resource Description
Framework (RDF) graph.

2) Lumi: Lumi translates user expressed intents using Nat-
ural Language Processing (NLP) into Nile [18]. Lumi uses
Named Entity Recognition (NER) to extract entities and label
them. The entities are extracted from queries gathered in a
chatbot interface. The NER method classifies the entities in the
sentence based on experience gathered in the learning phase.
There is not enough data to classify the entities with enough
accuracy, so it uses user feedback to correct the classifications.

3) BERT: A survey from 2020 on the advances in Intent-
Based Networking states that advances in Natural Language
Understanding (NLU) can aid in processing queries expressed
in a natural language [13]. The language representation
model Bidirectional Encoder Representations from Transform-
ers (BERT) proves to perform well in intent classification
and entity extraction tasks. The benefit of BERT is that is
does not require labeled data to be trained on. BERT uses
unlabeled data to pre-train which improves the understanding
of the complete language [22].

IV. DESIGN CONSIDERATIONS

We have identified four main factors to consider when
developing our IBN based implementation: the level of control
the user is allowed to have, the knowledge required, the
language used by the user, and the network onto which to
implement the intent.

A. Control

One of the important considerations for IBN is what the user
is allowed to express. This depends on the level of control a
user is allowed to have over the network. A limited translation
technique could be sufficient if a user has a limited level of
control and could only, for example, express intents about one
feature. The level of control influences the number and type
of intents. The level of control network operators are willing

to provide to the users depends on the type of user and the
type of network. For a system to be controlled by a user, the
user also requires knowledge of the network. Thus, the level
of control depends on the transparency of the network [7]. We
define two levels of control: unlimited and limited. Unlimited
control provides the user control over every service and aspect
of the network. The limited control indicates that the network
does not allow users to control every functionality.

B. Knowledge

The level of required knowledge for using an IBN approach
is also an important factor for the design. It entails the
knowledge that should either be provided or the users are
expected to have. Allowing users to control their data flows,
requires the network to provide the users with information on
the current flows, i.e. a form of transparency by the network
operators. The level of knowledge depends on the level of
control and the network. The controlling ability provides an
indication of the subject on which the user is required to have
knowledge. Excluding vendors, for example, only requires
knowledge on available vendors and the ones currently used.
The network transparency influences the amount of knowledge
the user is expected to possess. A user, possessing a detailed
knowledge on the topology, can request specific paths, while
others without that knowledge cannot.

C. Language

The language set used to express intents influences the com-
plexity of the translation technique for IBN. Using a limited
language set simplifies parsing user input, but it limits the
freedom of the user and requires the user to gain knowledge
of the usable syntax. We define two types of language sets that
can be used to implement IBN in the UPIN context: restricted
and unrestricted. The restricted language utilizes a specified
language set, where each intent can only be expressed by a
few queries. The unrestricted set supports natural language
allowing several descriptions for the same intent. Research
indicates that Natural Language Processing (NLP) provides
opportunities for intent recognition from natural language [13].

NLP aims to gather knowledge from human expressed
language to make computer systems understand provided
queries and use the understanding to perform tasks [23].
This research primarily aims at the understanding of natural
language, known as Natural Language Understanding (NLU).
An important task for NLU is understanding what the context
of the sentence is [24].

Intent detection is a classification problem [24]. Sentence
features are used to classify the intent of the sentence. The
features include words and grammar, but can be extended with
word context, sentence context or meta-data.

Ambiguity in interpretation is an issue for intent detection
[24]. It is difficult to classify different classes if the samples
have similar features. An approach to mitigate this issue is
to include multiple training samples of similar cases in the
different classes to allow the training phase to learn the proper
distinctions.



Training data is an important aspect of classification prob-
lems, since the classification is based on what is learned in the
training phase. A solution for lack of training data is utilizing
models that do not require labeled data or generating training
data. However, generating data can cause a model to under
perform on real world data.

Another possible issue for intent detection can be imbal-
anced training data [24]. Some classes might be represented
less by the training data causing imbalanced classification
performance. This issue is solved by balancing the samples.

D. Network

For expressing intents additional knowledge about network
characteristics is required. If the network is not able to provide
this information, the intents are limited. Hence the level of
openness of a network influences the design and achievable
scope of an IBN solution.

E. Approach

We design the implementation around a UPIN network
demo. The demo environment provides knowledge about the
network by visualizing it, while supporting limited services
based on path creation. We must note that our IBN based
solution will work on UPIN enabled domains.

As mentioned before, we have designed two IBN ap-
proaches based on the four relevant factors. Table I shows
the approaches and their accompanying factor levels. To in-
vestigate the possibilities for IBN for user-driven path control
we focus on a technical centric and human centric approach.
This results in the first approach being limited by the language
the user can use and the second providing more freedom.
Both methods require knowledge of the network topology and
its functionalities. Information on the functionalities provides
users with knowledge of what to control. The topology pro-
vides insight on data flows.

TABLE I
DESIGN FACTORS FOR THE IBN APPROACHES

Control Required
knowledge

Language Network

Technical
centric
approach

unlimited Network
and Syntax

Restricted UPIN
demo

Human
centric
approach

unlimited Network Unrestricted UPIN
demo

1) Intent design: The UPIN users are allowed to influence
the data paths, namely define the source and destination,
as well as defining inclusion criteria, exclusion criteria, and
capacity criteria. The inclusion and exclusion criteria relate
to attributes of the network devices and the path itself. A
visualization of the attributes that the user can influence is
shown in Figure 3. The attributes of network devices involve
three categories; the devices, the vendor, and the country.
Included devices are devices that must be included in the
path and excluded devices are forbidden to traverse. For the
vendor and country we also distinguished an excluded and

Fig. 3. Design of the path creation intent

included category. If an included vendor is set, the path can
only include devices from that vendor. The same goes for
included country. We have distinguished path attributes as the
capacity and the hop limit. The capacity entails bandwidth and
latency constraints.

2) Technical -centric approach: The goal for this approach
is to allow users to express intents about the service provided
by the UPIN demo, ie path creation. The translation technique
for this approach is simple as we parse specific and well
defined input, since here we do not provide freedom in user
expressions.

3) Human centric approach: The human-centric approach
uses Intent Detection to understand the desires of the users
from their expressed query. The goal of this approach is to
allow users to express their intents in natural language. The
main challenge for developing an approach using Natural
Language Understanding revolves around the training data.
We integrate user feedback in our design and use a chatbot
interface for communication, inspired by [18]. The chatbot
advances the demo environment by translating plain English
into configurations for the demo. Apart from specific demo
configurations our design includes a more general translation
enabling the approach to be implemented in other network
environments.

V. IMPLEMENTATION

A. Technical centric implementation

In this implementation we provide users with limited syntax.
This is listed in table II. Currently, the demo only supports
the listed services. Still, the last two rows of the table show
how we provide mechanisms for implementing more services
in the demo syntax in the future. We have developed an
IBN module and implemented this in the demo back-end.
The module includes logic to parse syntax and find available
paths. The demo front-end includes an editor style interface
where the user can enter the specific commands to express



TABLE II
SYNTAX FOR THE IBN MODEL IN THE UPIN DEMO

Class Service Syntax Demo
Path creation Create path

between device1
device2

SELECTPATH
‘Device1‘
‘Device2‘

Exclusion on band-
width

Create path with
the minimum band-
width set to X

WHERE
‘bandwidth‘ =
X

Exclusion on la-
tency

Create path with
maximum latency
set to X

WHERE ‘latency‘
= X

Inclusion of
device(s)

Create path includ-
ing device3

VIA ‘device3‘

Exclusion of de-
vice(s)

Create path not in-
cluding device3

EXCLUDING ‘de-
vice3‘

Exclusion of ven-
dor(s)

Create path not in-
cluding vendor X
devices

WHERE ‘vendor‘
!IN [X]

Inclusion of ven-
dor(s)

Create path only
including vendor X
devices

WHERE ‘vendor‘
IN [X]

Limiting path
length

Create path with a
maximum of X de-
vices

LIMIT X

Exclusion of coun-
try

Create path not in-
cluding devices sit-
uated in country X

WHERE ‘country‘
!IN [X]

Inclusion of coun-
try

Create path only
including devices
situated in country
X

WHERE ‘country‘
IN [X]

Exclusion of
attribute X

Create path not
including devices
where attribute X
is equal to Y

WHERE ‘X‘ !IN
[Y]

Inclusion of
attribute X

Create path only
including devices
where attribute X
is equal to Y

WHERE ‘X‘ IN
[Y]

the intent. These commands are parsed in the demo back-end
using JavaScript. The uppercase terms in the syntax are used
to detect the correct intent. Based on the intent, the relevant
entities are extracted. Since we only support the defined syntax
we do not include a validation process, and only the precise
syntax can be parsed. A list is formed with the nodes that
adhere to the intent expressed, based on the intent commands.
Using these nodes all available paths are found using breadth
first search.

B. Human centric implementation

The human-centric approach expands the technical-
approach by offering an alternative method of communica-
tion to the demo environment. To implement the chatbot
we use Rasa Open Source [25]. Rasa is a framework for
automated conversations supporting message understanding,
saving conversations and providing API endpoints. It provides
a dialogue system based on machine learning to understand
natural language. Since it is open source, extensible and well
documented, Rasa proves to be more versatile than enterprise
chatbot development software [26] [27].

For the implementation in the UPIN demo network we
expand the front-end with a chat interface and connect the

back-end to Rasa. The chatbot provides the user with the
syntax which can be sent to the editor interface. In the editor
interface the user is able to plan the path, similar to the
technical centric approach. We make this code available via
BitBucket1 to support reproducability of our work as well as
engage with other researchers interested in these efforts.

C. Configuration

To train the intent classification, entity extraction and
decision making components of the chatbot, Rasa uses a
configuration file. The configuration defines the pipeline and
policies used to make predictions based on the user input. The
pipeline can be divided into 4 main components: the tokenizer,
featurizers, classifiers, and selector.

The tokenizer splits the query into tokens [25]. To split the
sentence on word level we use the WhitespaceTokenizer. This
includes the substitution of special characters into whitespaces
under the condition of it being attached to a word and preceded
or followed by a whitespace, begin-, or end of the sentence.
This allows “test! ” and “test” to be tokenized into the same
word.

When the tokens are created the features of the words
are extracted [25]. Our implementation utilizes three types
of sparse featurizers. A sparse featurizer returns a featureset
as vectors. The first featurizer occuring in the pipeline is
the RegexFeaturizer which creates features for both intent
detection and entity extraction. The second featurizer in the
pipeline, CountVectorsFeaturizer, creates a bag-of-words rep-
resentation of the messages [25]. The bag of words represen-
tation disregards word order and focuses on the amount of
similar words in a sentence. The last featurizer, LexicalSyn-
tacticFeaturizer is implemented to support entity extraction
[25]. We apply this featurizer to create additional features for
entity extraction since our main intent has the ability to contain
several different entities.

The intent classifier assigns an intent to an input query.
The Entity extractor extracts the entities from that query. The
execution of these tasks is combined in the DIETclassifier. The
Dual Intent Entity Transformer (DIET) extracts the entities, in-
tent, and an intent ranking using the features created previously
in the pipeline [25]. A benefit of using the DIETclassifier is
the dual intent recognition and entity extraction ability and
that it performs well for custom entities. Both these benefits
are of use for our implementation.

The ResponseSelector predicts the appropriate response for
the chatbot based on the user messages. The selector uses the
features to rank the possible responses by confidence.

The configuration pipeline extracts the intent and entities
from the user input [25]. Based on this input actions need to
be taken at every step using the policies.

The human centric approach is developed to extend the
UPIN demo, providing users with an alternative method of
expressing intents. To achieve this the implementation trans-
lates user input into demo understandable syntax. However,

1https://bitbucket.org/thesis-chatbot/chatbot



TABLE III
TRAINING DATA AMOUNT FOR THE INTENTS

Intent Number of exam-
ples

greet 13
goodbye 10
correct 18
deny 12
create path 92
bot challenge 4
reset 9
help 7
more 5
list 6

this is not a general adopted syntax to configure networks.
To improve the generalizability of this extension we provide
a second output method to Nile syntax. Nile syntax is used
in earlier research and provides an abstraction layer that
resembles plain English [16]–[18]. The syntax allows to be
easily parsed into network configurations for different types
of networks. We have implemented Nile syntax based on the
previous research adapted to our intent.

VI. EXPERIMENTS & RESULTS

A. Experimental setup

1) Training data: Our implementation of the chatbot model
saves previous conversations that can be appended to the
training data. It is important for the NLU model to use real
world data. Synthetic messages will not fully represent human
conversations, which will cause the model to underperform
[25]. If the testing phase uses the same synthetic data the
model could appear as a well performing model, while this
might not perform well on real world data. For our intents
there are no existing datasets. Therefore, we have chosen to
create the data ourselves.

Table III shows the amount of examples per intent. The
create path intent includes entities which need to be repre-
sented in the examples. The amount of examples per entity
is presented in table IV. The entities entity, value, and option
are not mentioned since these are used for forms and are not
present in intents. We have set a minimum of five examples
per intent and ten examples per entity. The entities have more
examples because these contain more similarities and we aim
to prevent ambiguity in interpretation.

By providing more examples we allow the chatbot to
learn the proper distinctions. We try to prevent imbalanced
classification performance by balancing the data between the
entity roles. As a consequence, each role in the entities contain
roughly the same amount of examples. The exceptions to this
rule are the source and destination because these are required
for every path.

2) Configuration pipelines: To test what configuration
works best for our implementation we test several NLU
configuration pipelines for Rasa. We divide the tests into
two categories. First, we test the differences of adding more
characteristics to base features on. Second, we test the benefits

TABLE IV
TRAINING DATA AMOUNT FOR THE ENTITIES

Entity Role Number
of ex-
amples

devices source 92
devices destination 92
devices excluded device 20
devices included device 20
vendor included vendor 10
vendor excluded vendor 10
country included country 10
country excluded country 10
limit 10
capacity timing 10
capacity size 10
capacity minimal bandwidth 10
capacity maximum latency 10

of additional methods to gather features. These experiments
give us the best performing configuration for our data.

Table V presents the different features applied in the Lex-
icalSyntacticFeaturizer. Each table entry shows the features
for the previous token, the current token, and the next token.
The options for placement are BOS (beginning of sentence)
and EOS (end of sentence). We have three options for case
sensitivity: low (lower case), upper (uppercase), and title (first
character is uppercase). Partial tokens are extracted as features
as well. The beginning characters are extracted using prefix2
or prefix5 to look at the first two or five characters. The
ending characters are presented as the features: suffix1, suffix2,
suffix3, suffix5. The case and placement features are included
in every configuration, since we know that these are indicators
for differences in our data. For example, vendors and countries
are often written with a title. We test what the effects are of
applying different character features. Each character feature is
applied to the preceding token, the token, and the succeeding
token. Comparing the benefits of each feature on the different
tokens allows us to find the ideal features.

The best combination of features is tested by comparing the
different configurations listed in table V.

3) Evaluation methods: The pipelines are compared
through the performance of their accompanying NLU models.
This performance is measured in accuracy, precision, recall,
and F1 score. To calculate the performance metrics we use
the following notions:

TP = true positives
FP = false positives
TN = true negatives
FN = false negatives

a) Accuracy: The accuracy measures how well the model
has classified the intents and the entities [28]:

accuracy =
TP + TN

TP + TN + FP + FN
(1)

b) Precision: The precision is an indicator of how many
classified entries are correctly predicted [28]. It looks at the



TABLE V
CONFIGURATION PIPELINES WITH DIFFERENT FEATURES FOR THE

LexicalSyntacticFeaturizer

Name Preceding token Token Succeeding token
PF1 BOS, low, title, up-

per
BOS, EOS, low, ti-
tle, upper

EOS

PF2 BOS, low, title, up-
per, suffix1

BOS, EOS, low, ti-
tle, upper

EOS

PF3 BOS, low, title, up-
per, suffix2

BOS, EOS, low, ti-
tle, upper

EOS

PF4 BOS, low, title, up-
per, suffix3

BOS, EOS, low, ti-
tle, upper

EOS

PF5 BOS, low, title, up-
per, suffix5

BOS, EOS, low, ti-
tle, upper

EOS

PF6 BOS, low, title, up-
per

BOS, EOS, low, ti-
tle, upper, suffix1

EOS

PF7 BOS, low, title, up-
per

BOS, EOS, low, ti-
tle, upper, suffix2

EOS

PF8 BOS, low, title, up-
per

BOS, EOS, low, ti-
tle, upper, suffix3

EOS

PF9 BOS, low, title, up-
per

BOS, EOS, low, ti-
tle, upper, suffix5

EOS

PF10 BOS, low, title, up-
per

BOS, EOS, low, ti-
tle, upper

EOS, suffix1

PF11 BOS, low, title, up-
per

BOS, EOS, low, ti-
tle, upper

EOS, suffix2

PF12 BOS, low, title, up-
per

BOS, EOS, low, ti-
tle, upper

EOS, suffix3

PF13 BOS, low, title, up-
per

BOS, EOS, low, ti-
tle, upper

EOS, suffix5

PF14 BOS, low, title, up-
per, prefix2

BOS, EOS, low, ti-
tle, upper

EOS

PF15 BOS, low, title, up-
per, prefix5

BOS, EOS, low, ti-
tle, upper

EOS

PF16 BOS, low, title, up-
per

BOS, EOS, low, ti-
tle, upper, prefix2

EOS

PF17 BOS, low, title, up-
per

BOS, EOS, low, ti-
tle, upper, prefix5

EOS

PF18 BOS, low, title, up-
per

BOS, EOS, low, ti-
tle, upper

EOS, prefix2

PF19 BOS, low, title, up-
per

BOS, EOS, low, ti-
tle, upper

EOS, prefix5

proportion of correctly predicted entries out of all predicted
entries:

precision =
TP

TP + FP
(2)

c) Recall: The recall is an indicator of the proportion
of correctly classified entries[28]. The recall does not look
at the incorrect labeled entries in a class, but focuses on the
proportion of entries that are correctly predicted to the class:

recall =
TP

TP + FN
(3)

d) F1 score: The F1 score is an alternative test for
the accuracy of classification derived from the precision and
recall [28].The F1 score combines the recall and precision
into a measure that provides the harmonic mean for the
two metrics. With unbalanced data the F1 score provides an
alternative method of calculating the accuracy to make sure
the performance is well measured.

F1 =
2 ∗ (precision ∗ recall)
precision+ recall

(4)

e) Average: The performance metrics are calculated as
an average over the intent and entity classes. We have chosen
to calculate this as micro averages, since we have unbalanced
amount of examples per intent and entity classes. Taking the
micro average means that we do not calculate the average as a
harmonic mean between the classes, but we take the average
over all data entries.

B. Pipeline comparison results

The performance of the different features on entity classifi-
cation are listed in table VI. We focus on the entity classifica-
tion performance, since the LexicalSyntacticFeaturizer creates
features for entity extraction. The highlighted entries represent
the features that perform best in one of the measurements. The
table shows that the FP2, FP4, and FP15 perform best for the
preceding token. FP2 and FP4 add the last character and the
last three characters to the featureset. Adding the last character
improves the precision and adding the last three characters
improves the recall. FP15 includes the first five characters to
the featureset. This performs best in all measurements. For
the token itself FP7 and FP16 outperform the other features
in all measurements. FP7 appends the last two characters and
FP16 the first two characters as features. For the succeeding
token the best performing features are FP12, FP13, and FP19.
For this token the first three and five characters improve the
performance as well as the last five characters.

The best performing features are implemented in the Lex-
icalSyntacticFeaturizer. To compare the effect of different
featurizers the performance of them is tested on the test
data. Table VII presents the results of the four compared
NLU pipelines. The highlighted table entries indicate the
best performance on the different measurements. Overall P4
performs best with recording the highest performance in every
category but one. For entity precision P3 performs better.
However, P3 has worse results in the intent category compared
to P4. Apart from comparing the measurements for the best
performance we have also tested the intent recognition ability
with different amounts of training data. Figure 4 shows the
F1 scores of the different pipelines. The figure indicates that
an increased amount of training data improves the F1 score
on P2, P3, and P4. P1 plateaus around 60 percent, while the
other pipelines increase from an F1 score between 64 and 69
percent to an F1 score between 80 and 85 percent.

Figure 5 depicts the performance of the P4 pipeline. The
confusion matrix indicates which intents and entities where
misclassified during the tests along with the class they got con-
fused with. The following intents got confused for each other
once: deny and correct, greet and correct, and deny and more.
The entities that got misclassified consist mostly of included
entities that got confused for excluded entities and vice versa.
Bandwidth and latency, and source and destination have been
confused as well. The confidence distribution histogram for
intent classification depicted in Figure 6 provides an insight on
the confidence the classifier had while predicting the intents.
The confidence while making a wrong intent prediction ranges
between 39 and 98 percent. For the entity predictions six



TABLE VI
AVERAGE ACCURACY, PRECISION, RECALL AND F1 SCORE OF THE

COMPARISON OF THE FEATURES FOR ENTITY CLASSIFICATION OF THE
LexicalSyntacticFeaturizer ROUNDED TO TWO DECIMAL PLACES

Name Accuracy Precision Recall F1 score
FP1 0.80 0.39 0.36 0.38
FP2 0.90 0.74 0.68 0.71
FP3 0.89 0.73 0.66 0.69
FP4 0.90 0.72 0.71 0.72
FP5 0.90 0.73 0.68 0.70
FP6 0.78 0.35 0.35 0.35
FP7 0.83 0.48 0.46 0.47
FP8 0.82 0.44 0.43 0.43
FP9 0.81 0.42 0.43 0.42
FP10 0.84 0.55 0.51 0.53
FP11 0.85 0.59 0.54 0.56
FP12 0.85 0.87 0.58 0.57
FP13 0.89 0.69 0.64 0.66
FP14 0.88 0.69 0.65 0.67
FP15 0.90 0.75 0.69 0.72
FP16 0.82 0.45 0.45 0.45
FP17 0.81 0.43 0.43 0.43
FP18 0.88 0.43 0.49 0.44
FP19 0.88 0.49 0.63 0.64

TABLE VII
AVERAGE ACCURACY, PRECISION, RECALL AND F1 SCORE FOR ENTITY

AND INTENT CLASSIFICATION TO COMPARE THE PERFORMANCE OF
ADDITIONAL FEATURIZERS ROUNDED TO TWO DECIMAL POINTS

P1 P2 P3 P4
Accuracy intent 0.63 0.84 0.83 0.85
Precision intent 0.63 0.86 0.83 0.86
Recall intent 0.63 0.84 0.83 0.85
F1 score intent 0.63 0.83 0.83 0.85
Accuracy entity 0.74 0.82 0.93 0.93
Precision entity 0.33 0.46 0.85 0.83
Recall entity 0.29 0.46 0.80 0.80
F1 score entity 0.31 0.46 0.82 0.82

wrong prediction are made with a confidence over 70 percent,
and six with a confidence less than 70 percent. For both
intent and entity classification the confidence for the correct
predictions succeeds 90 percent for most cases.

VII. DISCUSSION

The first experiment results indicate that adding features
based on characters in the token and its surrounding tokens
improve the performance of the chatbot. The structure of our
data causes the classifier to benefit from character and place-
ment information for decision making. Often the word “from”
appears in front of the source for example. Experimenting
with the different features provides an insight into what token
characteristics are important for classification. For our data we
see that adding features based on small character sets of even
one character can improve the accuracy from 80 percent to
90 percent and the F1 score from 38 percent to 71 percent.
Another method to structure the data is to divide the services
into different intents.

The results of the second experiment indicate that the best
performance is achieved by configurations with the character

40 60 80 100 120
Number of intent examples present during training

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

La
be

l-w
ei

gh
te

d 
av

er
ag

e 
F1

 sc
or

e 
on

 te
st

 se
t

P1
P2
P3
P4

Fig. 4. F1 score of different pipelines with different amounts of intent training
examples

Fig. 5. Confusion matrix of the intent prediction for the test data

and placement features included. The configuration without the
bag-of-word features does perform worse on intent recognition
and the configuration without the placement and character
features performs worse on entity extraction. A combination of
the two overall performs best. The performance on entity clas-
sification shows that our extensive use of entities in one intent



Fig. 6. Confidence distribution of the intent prediction for the test data

requires the LexicalSyntacticFeaturizer. The best performing
pipelines improve when the amount of training data increases,
showing no signs of plateauing. For this reason we cannot
determine an optimal number of training examples. This can
only be determined by adding data to the training and test
sets, preferably real world representative data. Otherwise, the
model doesn’t perform optimally in a real world deployment.

The confusion matrix on the best performing model indi-
cates some confusion mostly on entities that could be filled
with the same values. An example that provides confusion is
the sentence “From A to B including Cisco devices”. Changing
two characters in this sentence changes the word “including”
to “excluding”, which changes the entity. Learning these
precise differences is difficult with limited data.

An unexpected result is the confidence when a wrong
classification is made. This could be due to ambiguity in
the training data, since some the examples are very similar.
Restructuring the data or providing more examples could be
the solutions to this problem.

Overall the performance of the model is high, but not high
enough to allow the chatbot to classify intents and entities
without supervision and a method of rectifying for the user.
Improving the model with more training data could eliminate
this need. The model should also be trained with real world
data. Since it is trained and tested on data created by us,
the results could potentially be biased on this type of data.
Providing the model with real world training and testing data
provides a transparent insight into its performance.

VIII. CONCLUSION

The aim of this research is to investigate the limitations
and possibilities of Intent-Based Networking for user-driven

path control. We have implemented Intent-Based Networking
in the UPIN demo. This work, however, can be extendable
beyond UPIN and the following considerations do not apply
only within the UPIN demo. The limitations we identified
are mostly based on the network possibilities and the lan-
guage used for expression. The level of knowledge of the
network limits the ability of the user. The language used
limits the method of expression. Not limiting the user in
method of expression is only possible when Natural Language
Understanding is used. This technique provides possibilities
for freedom in expression. However, the performance will
depend on quality of the data available and the performance of
classifiers. The results show that for user-driven path control
an implementation using NLU is possible. However, it does
not perform perfectly so user feedback is required.

Improving the performance of the chatbot to enable the
ability to individually classify entities and intent could be
interesting future research. Our advice is to use saved con-
versations from the current chatbot implementation, including
data with, for example, common spelling mistakes. Future
research could also include security risks of implementing
a human centric IBN method. Knowing how a user could
maliciously influence the system could provide alternative
insights in the design considerations. Providing users with
network transparency could also impact the security.

ACKNOWLEDGEMENTS

This research received funding from the Dutch Research
Council (NWO) under the project UPIN.

REFERENCES

[1] T. Dufva and M. Dufva, “Grasping the future of the digital
society,” Futures, vol. 107, pp. 17–28, 2019.

[2] C. Hesselman, P. Grosso, R. Holz, et al., “A responsible inter-
net to increase trust in the digital world,” Journal of Network
and Systems Management, vol. 28, no. 4, pp. 882–922, 2020.

[3] R. Bazo, L. Boldrini, C. Hesselman, and P. Grosso, “In-
creasing the transparency, accountability and controllability of
multi-domain networks with the upin framework,” in Proceed-
ings of the ACM SIGCOMM 2021 Workshop on Technologies,
Applications, and Uses of a Responsible Internet, 2021, pp. 8–
13.

[4] A. Clemm, L. Ciavaglia, L. Z. Granville, and J. Tantsura,
“Intent-Based Networking - Concepts and Definitions,” Inter-
net Engineering Task Force, Internet-Draft draft-irtf-nmrg-ibn-
concepts-definitions-09, Mar. 2022, Work in Progress, 29 pp.
[Online]. Available: https://datatracker.ietf.org/doc/html/draft-
irtf-nmrg-ibn-concepts-definitions-09.

[5] T. A. Khan, A. Mehmood, J. J. D. Ravera, A. Muhammad,
K. Abbas, and W.-C. Song, “Intent-based orchestration of
network slices and resource assurance using machine learn-
ing,” in NOMS 2020-2020 IEEE/IFIP Network Operations
and Management Symposium, IEEE, 2020, pp. 1–2.

[6] Y. Han, J. Li, D. Hoang, J.-H. Yoo, and J. W.-K. Hong,
“An intent-based network virtualization platform for sdn,” in
2016 12th International Conference on Network and Service
Management (CNSM), IEEE, 2016, pp. 353–358.

[7] L. Boldrini, R. Bazo, C. Hesselman, and P. Grosso, “Upin–a
shift in network control from operator to end user,” in ICT
Open 2021, 2021.



[8] D. Soni and A. Makwana, “A survey on mqtt: A protocol
of internet of things (iot),” in International Conference On
Telecommunication, Power Analysis And Computing Tech-
niques (ICTPACT-2017), vol. 20, 2017, pp. 173–177.

[9] Snowpack, How snowpack works, https : / / www. snowpack .
dev/concepts/how-snowpack-works, Accessed: 12=06-2022,
2020.

[10] S. H. Haji, S. Zeebaree, R. H. Saeed, et al., “Comparison
of software defined networking with traditional networking,”
Asian Journal of Research in Computer Science, pp. 1–18,
2021.

[11] M. Pham and D. B. Hoang, “Sdn applications-the intent-based
northbound interface realisation for extended applications,”
in 2016 IEEE NetSoft conference and workshops (NetSoft),
IEEE, 2016, pp. 372–377.

[12] A. Koshibe, Intent framework, https://wiki.onosproject.org/
display / ONOS / Intent + Framework, Accessed: 26-05-2022,
2016.

[13] E. Zeydan and Y. Turk, “Recent advances in intent-based net-
working: A survey,” in 2020 IEEE 91st Vehicular Technology
Conference (VTC2020-Spring), IEEE, 2020, pp. 1–5.

[14] OpenDayLight, Nemo:user manual, https : / / wiki - archive .
opendaylight.org/view/NEMO:User Manual, Accessed: 25-
01-2022.

[15] ——, Network intent composition, https://wiki.opendaylight.
org /display/ODL/Network+Intent+Composition, Accessed:
25-01-2022, 2022.

[16] M. Riftadi and F. Kuipers, “P4i/o: Intent-based networking
with p4,” in 2019 IEEE Conference on Network Softwarization
(NetSoft), IEEE, 2019, pp. 438–443.

[17] A. S. Jacobs, R. J. Pfitscher, R. A. Ferreira, and L. Z.
Granville, “Refining network intents for self-driving net-
works,” in Proceedings of the Afternoon Workshop on Self-
Driving Networks, 2018, pp. 15–21.

[18] A. S. Jacobs, R. J. Pfitscher, R. H. Ribeiro, et al., “Hey,
lumi! using natural language for {intent-based} network man-
agement,” in 2021 USENIX Annual Technical Conference
(USENIX ATC 21), 2021, pp. 625–639.

[19] R. A. Addad, D. L. C. Dutra, M. Bagaa, T. Taleb, H. Flinck,
and M. Namane, “Benchmarking the onos intent interfaces to
ease 5g service management,” in 2018 IEEE Global Commu-
nications Conference (GLOBECOM), IEEE, 2018, pp. 1–6.

[20] Y. Tsuzaki and Y. Okabe, “Reactive configuration updating for
intent-based networking,” in 2017 International Conference
on Information Networking (ICOIN), IEEE, 2017, pp. 97–102.

[21] M. Kiran, E. Pouyoul, A. Mercian, B. Tierney, C. Guok, and
I. Monga, “Enabling intent to configure scientific networks
for high performance demands,” Future Generation Computer
Systems, vol. 79, pp. 205–214, 2018.

[22] Q. Chen, Z. Zhuo, and W. Wang, “Bert for joint intent clas-
sification and slot filling,” arXiv preprint arXiv:1902.10909,
2019.

[23] K. Chowdhary, “Natural language processing,” Fundamentals
of artificial intelligence, pp. 603–649, 2020.

[24] H. Weld, X. Huang, S. Long, J. Poon, and S. C. Han, “A sur-
vey of joint intent detection and slot-filling models in natural
language understanding,” arXiv preprint arXiv:2101.08091,
2021.

[25] R. Technologies, Introduction to rasa open source, https : / /
rasa.com/docs/rasa/, Accessed: 12-06-2022, 2021.

[26] R. K. Sharma and M. Joshi, “An analytical study and review of
open source chatbot framework, rasa,” International Journal
of Engineering Research and, vol. 9, no. 06, 2020.

[27] S. Pérez-Soler, S. Juarez-Puerta, E. Guerra, and J. de Lara,
“Choosing a chatbot development tool,” IEEE Software,
vol. 38, no. 4, pp. 94–103, 2021.

[28] R. Jindal, R. Malhotra, and A. Jain, “Techniques for text clas-
sification: Literature review and current trends.,” webology,
vol. 12, no. 2, 2015.


