
Next-generation internet at terabit speed: SCION in P4
Joeri de Ruiter∗

SURF
Utrecht, The Netherlands

Caspar Schutijser
SIDN Labs

Arnhem, The Netherlands

ABSTRACT
Regularly, new architectures are proposed to address shortcom-
ings in the current internet. It is not always trivial to evaluate how
these proposals would perform in practice. This situation is im-
proved significantly with the introduction of the P4 programming
language and programmable network equipment. In this paper we
discuss our implementation of one particular future internet archi-
tecture, namely SCION. We implemented a SCION router in P4 for
switches based on the Intel Tofino ASIC. Having an open source P4
implementation of SCION that runs on high-speed hardware can
contribute to its adoption as well as support research in this area.
Our work lead to several recommendations for and subsequent
changes to the SCION protocol, as well as some generic guidelines
when designing protocols. A first analysis of our implementation
shows it can process SCION packets at high speeds.

CCS CONCEPTS
• Networks→ Network architectures.

KEYWORDS
programmable networking, P4, future internet, SCION
ACM Reference Format:
Joeri de Ruiter and Caspar Schutijser. 2021. Next-generation internet at
terabit speed: SCION in P4. In The 17th International Conference on emerging
Networking EXperiments and Technologies (CoNEXT ’21), December 7–10,
2021, Virtual Event, Germany. ACM, New York, NY, USA, 7 pages. https:
//doi.org/10.1145/3485983.3494839

1 INTRODUCTION
Though it is hard to imagine a world without internet nowadays,
it is not without its flaws. Partly this is due to the fact that it
was never designed with the way we currently use it in mind.
Most notably, security was not a concern in its initial design and
has mainly been bolted onto existing protocols, e.g., through TLS,
DNSSEC and RPKI. Regularly there are proposals to fundamentally
address issues through new architectures. However, it is not a
trivial task to get these ideas from a research environment to real-
world deployment. One of the challenges is to evaluate how a new
protocol would perform in practice, e.g., when running on hardware.
Recent developments in the area of programmable networking offer
a solution for this in the form of the domain-specific language
P4 and network equipment containing programmable ASICs. In
∗Most of this research was carried out while employed at SIDN Labs.

CoNEXT ’21, December 7–10, 2021, Virtual Event, Germany
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in The 17th Interna-
tional Conference on emerging Networking EXperiments and Technologies (CoNEXT ’21),
December 7–10, 2021, Virtual Event, Germany, https://doi.org/10.1145/3485983.3494839.

this paper we will discuss how we implemented a new internet
architecture that is gaining momentum, namely SCION [18], on
programmable network switches. The switches contain Intel Tofino
ASICs [12], which we programmed using P4 [4]. This allows us to
determine how feasible it is to run the SCION protocol on switch
hardware and evaluate its performance. Having an open source P4
implementation that runs on high-speed hardware can contribute
to its adoption as well as support research in this area. At the
same time, implementing a protocol in P4 for dedicated hardware
allows for early feedback to protocol designers, before protocols
are widely deployed and it is hard to change them. In this paper
we present the design and implementation of a SCION router in P4
and give a first analysis of its performance, indicating how SCION
might perform when ran on hardware. Based on our experience we
also give several guidelines to take into account when designing
a protocol. Our implementation is available as open source on
https://github.com/sidn/p4-scion.

2 P4
P4 is a domain specific language for packet processing on network
devices such as switches and network cards [4] and can be used
to add support for new protocols to network devices. As a result
it is no longer necessary to wait for vendors to implement new
protocols and it allows for easy experimentation with new protocols
on hardware. Note that, though P4 is very generic, it depends on
the specific hardware target which P4 functionality is available.

For parsing, a state machine is specified, with transitions based
on values in the header. Complexity of the parser, measured in the
number of transitions and bytes parsed per state, is an important
factor in determining potential throughput.

A key concept in P4 is the use of match-action tables. This allows
us to perform a certain action based on a value in the headers of
the packet that is currently processed. Matching can typically be
done at line speed in the data plane. However, adding and removing
table entries is slower and is done via the control plane.

3 SCION
Below we give a short introduction of SCION [18] and discuss the
aspects that are relevant for our implementation.

Currently the internet consists of interconnected networks, also
referred to as autonomous systems (ASs). In SCION the internet still
consists of autonomous systems. However, an additional layer of
hierarchy is added by grouping autonomous systems into so-called
isolation domains (ISDs). ASs in an ISD might, for example, share a
jurisdiction or geographic location. The administration of an ISD
is taken care of by the ISD core, a group of autonomous systems
referred to as core ASs.

Routing in SCION is based on so-called Packet Carried Forward-
ing State. That means that every packet contains the path that it
needs to travel (at the AS level). This gives senders the capability

https://orcid.org/0000-0003-1535-2335
https://doi.org/10.1145/3485983.3494839
https://doi.org/10.1145/3485983.3494839
https://doi.org/10.1145/3485983.3494839
https://github.com/sidn/p4-scion


CoNEXT ’21, December 7–10, 2021, Virtual Event, Germany Joeri de Ruiter and Caspar Schutijser

to determine how their network traffic should travel through the
internet. In order to do that, senders need to know which paths to
the intended destination AS are available, which is not unlike the
way we currently use DNS to lookup IP addresses.

In every ISD, ASs are hierarchically organised based on their
connections in a directed acyclic graph with the ISD core at its root.
This allows the possible paths to be determined in a straightforward
and efficient way. This process, also known as beaconing, is started
by the core ASs, which send path segment construction beacons
(PCBs) downstream to their neighbouring non-core ASs. When a
non-core AS receives a PCB, it adds its own identity to it, as well
as some additional information, which will later be used when
constructing the paths in the packet headers.

The information that is used to construct the paths is the so-
called hop field. In the data plane, these hop fields will be included
in packet headers to specify which path the packet should follow.
A hop field contains information on how the packet should be
forwarded by the corresponding AS, i.e. the expected ingress and
desired egress interfaces, and is protected using a cryptographic
Message Authentication Code (MAC). This MAC prevents the con-
struction of arbitrary paths and enforces the use of authorised paths,
i.e. paths that were constructed through the beaconing process in-
volving the relevant ASs. A hop field also contains an expiration
time, after which the hop field is no longer valid.

After adding its information, the AS forwards the PCB to its
downstream neighbours, which follow the same procedure. As a
result, a PCB contains information about the path it travelled from
the ISD core to the current AS. Eventually the PCBs will reach the
leaf ASs and, based on the information in the PCBs, all ASs will
know at least one path by which the core of the ISD can be reached,
namely the path that the beacon followed. As well as forwarding
the PCB, every AS stores the path it just learned locally and informs
the ISD core about the path(s) over which it prefers to be reached.
Finally, the core knows how every AS can be reached and every AS
knows how the ISD core can be reached.

The inter-ISD beaconing process, performed between core ASs,
also uses the PCBs, but follows a flooding approach similar to BGP.

To bootstrap the beaconing process, a special path type is used:
one-hop paths. This path type can be used for communication
between direct neighbours when there is no authenticated path
established yet. The sender will add a valid hop field in the header
for its own AS, but leaves the hop field for the receiving AS empty.
Upon receiving the packet, the border router of the receiving net-
work will add a valid hop field before forwarding it to the local
network. This way, the recipient can use the hop fields in the packet
to construct a return path.

To indicate issues in the network, such as link failures or prob-
lems with the verification of cryptographic MACs, SCION uses the
SCMP protocol, similar to the ICMP protocol in today’s Internet.

4 PROTOCOL ISSUES AND CHANGES
Originally the SCION protocol was designed mainly with software
implementations in mind. As a result we ran into several issues with
the header format of the SCION protocol, which made it hard or
inefficient to implement on our hardware. Therefore, we proposed

several changes to the headers to make them easier and more effi-
cient to implement on hardware. Below we discuss the changes that
are included in the new official headers. Previously, we discussed
these changes briefly in [7].

Addresses. The headers contained fields that indicated the types
of addresses that were used for the end hosts in the local network
(Fig. 1a). Examples of address types are IPv4 and IPv6 addresses.
Different address types can have different lengths. The fact that
just the type, not the length, of these addresses was included in
the packet meant that every node between the end hosts needed
to be aware of the address types used. This despite the fact that
intermediate nodes do not actually need these addresses for pro-
cessing and only need to know the lengths to be able to skip over
them. We suggested to include the length of those addresses as
well, such that intermediate routers do not have to be aware of the
various types. In the new format of the common header (Fig. 1b),
the lengths are now included explicitly as DL and SL. This also
provides flexibility to experiment with new local address types, as
only the sender’s and recipient’s networks use the address types. In
general, including an explicit length instead of this being implicit
depending on the value of another header field allows for more
flexibility within a protocol.

Forwarding path. A forwarding path can consist of up to three
segments, each consisting of a list of hops, which combined form a
complete path. In the old headers this was structured as a nested
list (Fig. 2a): the first-level lists contained info fields, with generic
information on the segment, and each of those fields was followed
by another list containing the hop fields. This structure was then re-
peated for each segment. While the parsing of this structure is fairly
straightforward to program in software, it represents a challenge
when implemented directly on hardware where all resources need
to be statically allocated. Therefore, we suggested to restructure
the forwarding path using two simple lists (Fig. 2b): first a list of
all info fields, followed by another list containing all hop fields. In
general, it is preferable to avoid the use of complex data structures,
such as nested lists, in order to provide for easy parsing.

Another change to the forwarding path concerns the CurrINF
and CurrHF fields. These fields are used to point to the current info
field and hop field, i.e., the info and hop field the router needs to
use when forwarding the packet. In the old version of the protocol
(Fig. 1a), those fields pointed to the current info and hop fields using
an absolute byte offset into the packet. For generic software imple-
mentations that is easy to use by just advancing a pointer based
on the offset to get to the desired data. However, on specialised
hardware it might not be that easy when incoming data is processed
as a stream and no random access to data is provided. In that case it
would be required to keep track of the number of bytes processed
so far, which might introduce a significant overhead or might not
even be possible at all. In the new headers (Fig. 2d), the current
hop field is referred to using an index. This is straightforward to
implement on hardware as well as in software. To determine the
current info field, three new fields are added: Seg0Len, Seg1Len and
Seg2Len. These fields contain the number of hop fields in the re-
spective segments. Combining this information with the index in
CurrHF, we can determine the current info field, thus eliminating
the need for a separate CurrINF field. These fields also indicate



Next-generation internet at terabit speed: SCION in P4 CoNEXT ’21, December 7–10, 2021, Virtual Event, Germany

0 8 16 24 31

Version DstType SrcType TotalLen
HeaderLen CurrINF CurrHF NextHdr

DstISD
DstAS

SrcISD
SrcAS

DstHostAddr (var. len.)
SrcHostAddr (var. len.)
Padding (optional)

(a) Old format of common header

0 8 16 24 31

Version QoS FlowID
NextHdr HdrLen PayloadLen
PathType DT DL ST SL RSV

DstISD
DstAS

SrcISD
SrcAS

DstHostAddr (var. len.)
SrcHostAddr (var. len.)

(b) New format of common header

Figure 1: Common header

Info field
Hop field

. . .
Hop field

1 - 3
(a) High-level structure of old forwarding path

PathMeta
Info field }1 - 3
Hop field }2 - x

(b) High-level structure of new forwarding path

Info field
0 8 16 24 31

RSV P S U Timestamp
Timestamp (cont.) ISD SegLen

Hop field
0 8 16 24 31

C RSV F V X ExpTime ConsIngress Cons-
Egress

ConsEgress (cont.) MAC

(c) Detailed elements of old forwarding path

PathMeta
0 8 16 24 31

C CurrHF RSV Seg0Len Seg1Len Seg2Len

Info field
0 8 16 24 31

RSV P C RSV SegID
Timestamp

Hop field
0 8 16 24 31

RSV I E ExpTime ConsIngress
ConsEgress

MAC

(d) Detailed elements of new forwarding path

Figure 2: Forwarding path header

how many info fields are included, as an info field is included if the
respective number of hop fields is not 0. In general, using indices is
preferable over the use of absolute offsets.

This change also solves a couple of other challenges with the
old headers, namely that the number of hop fields was implicit, it
was not trivial to determine which segment a hop field belonged
to and whether a hop field was the last in a segment. Previously,
to determine whether the end of the hop fields was reached, the
amount of parsed bytes was compared to the contents of the Head-
erLen field which contains the size of the SCION header in the
packet. This led to similar issues as with the absolute offsets. Using
the newly added fields we know the total number of hop fields
included, making it possible to determine whether the end of the
SCION header is reached without knowing the exact current byte
offset. At the same time it is now also fairly straightforward to
determine to which segment a hop field with a particular index
belongs and whether it is the last hop field in a segment. Previously,
each first and last hop field in a segment would have a XOVER
flag set (Fig. 2c). Whether it was the first or the last hop field of

a segment depends on whether the flag already occurred earlier
in this segment. To determine whether a hop field was the first or
last in a segment, one would have to look at the next or previous
hop field (which might not exist). With the new design we can
determine which segment CurrHF belongs to and whether it is the
last in a segment, using the fields Seg0Len, Seg1Len and Seg2Len. At
the same time, when forwarding a packet it is no longer needed to
compute the byte offsets of the next hop field and, optionally, info
field but CurrHF only needs to be increased by one.

Finally, the size of the hop fields was changed. Previously, hop
fields had a variable size, which is challenging when having to
statically allocated resources in advance. In the new design the
hop fields have a fixed size, easing the parsing of the list of hop
fields. This also makes it easy to skip over previous hop fields to the
currently relevant hop field using the index CurrHF. In general, the
use of fixed length fields results in a more efficient implementation.

Combined these changes make it possible to implement the
SCION protocol more efficiently for dedicated hardware, such as
the Intel Tofino.



CoNEXT ’21, December 7–10, 2021, Virtual Event, Germany Joeri de Ruiter and Caspar Schutijser

One-hop
processor

Hop field
registration

service
SCION

control service

Control plane
Data plane

Switch

Tofino

MAC verification table

Figure 3: Overview of the different components and their
interaction

5 DESIGN AND IMPLEMENTATION
Our implementation consists of multiple components: the P4 im-
plementation and several control plane components (Fig. 3). Below
we discuss the different components.

5.1 Dealing with cryptography
When implementing the SCION protocol for the Intel Tofino, the
main challenge is the lack of support for cryptographic operations
on the Tofino chip. As the hop fields contain a cryptographic MAC
which needs to be verified upon receiving a packet, a cryptographic
operation would be required for every packet we process. One
way to do this would be to forward the packets to the control
plane for verification. This not a feasible approach though, as this
forwarding is a very slow operation and therefore would severely
limit the performance. However, we can make use of the fact that
hop fields are typically re-used for multiple packets in the basic
SCION protocol. The number of hop fields that are valid at the same
time depend on the topology and the configured expiration time.
In Section 6.1, we give an idea about the number of hop fields that
would need to be stored. This allows us to work around the lack
of cryptographic support by using a table that contains all the hop
fields that are currently valid, referred to as the MAC verification
table. Using this table we verify the relevant hop field of incoming
packets: if present in the table, it is valid; otherwise it is not and the
packet will be dropped. Additionally, we also use a table to verify
that a packet is received on a port that matches the ingress interface
in the hop field.

In SCION, the beaconing, as well as other administrative tasks
within a network, is taken care of by the SCION control service. We
added functionality to this service to register hop fields at the Hop
field registration service on the switch, when these are generated
in the beaconing process. To support one-hop paths, the receiving
network, typically the border router, needs to add a hop field in the
packet. As we cannot generate the hop field in the data plane, we
forward incoming packets with a one-hop path to the control plane
at the switch. There, our One-hop processor computes a valid hop
field, updates it in the packet and sends it to theHop field registration
service. The packet is then processed as usual and forwarded to the
intended recipient, which can use the hop fields in the packet to
construct a path to return packets. As mentioned before, the method
of forwarding the packets to the control plane does not scale well.

However, the number of packets with one-hop paths is expected to
be very low, as they can only be send by direct neighbours and are
typically only used in the beaconing process. Therefore, we do not
expect this to be an issue in practice.

As we can not easily check in the data plane whether a hop field
expired, we need to make sure that there are only valid hop fields
in the table. Unfortunately we cannot use the ageing functionality
introduced in P4, as this only takes into account when entries were
last used whereas for the hop fields we need to compare a times-
tamp to the current time. To achieve the desired functionality, the
Hop field registration service implements an operation that iterates
through the MAC verification table and removes the expired hop
fields. As a result we might be accepting expired hop fields until
the next check is executed, so it is important that this process is
triggered regularly to keep this to a minimum. An alternative would
be to keep a record in the control plane of all hop fields that are
present in the table and remove them from the table the moment
they expire. This would require the control plane to always have
an up to date overview of all hop fields in the table.

5.2 Parsing hop-fields
To implement the parsing of the headers efficiently, the number
of state transitions in the parser is ideally as low as possible. The
changes of the headers made it possible to implement the parser
using less transitions and use the available resources more effi-
ciently. For example, more paths are supported as we now have a
maximum for the number of hops in the complete path instead of a
maximum per segment. Also, the parsing of the common header
and info fields can be done in a straight forward manner. Due to the
fixed size of the hop fields and the use of an index in CurrHF, we
can optimise the parsing of the hop fields. As the number of states
that we can introduce is limited, we use the following approach to
try and maximise the number of hop fields we can support. As we
only need the current hop field for processing, we include long data
fields that can contain a different number of hop fields, namely 16, 8,
4, 3, 2 and 1, which are used to skip over the unused hop fields. For
each of these lengths we have a dedicated state, to which we can
transition based on the value of the corresponding bits in CurrHF.
This reduces the number of states in the parser and therefore we
can support more hop fields. In the current design, we can parse
up to 32 hop fields. Longer paths can be used though, as long as
the hop field that we need to process is not beyond the first 32 hop
fields.

There is one situation in which we need to process two hop
fields in a packet, namely when switching between path-segments.
In that case, there is one hop field for ingress and one for egress.
Instead of processing both hop fields at the same time, we first
process the ingress hop field. In case a hop field is valid, we check
whether it is the last hop field in the segment. If this is the case,
we increase CurrHF as usual, but instead of forwarding the packet
we recirculate it as we need to completely process the egress hop
field as well. As CurrHF was just increased, we will then process
the next hop field, namely the one for egress, as usual.



Next-generation internet at terabit speed: SCION in P4 CoNEXT ’21, December 7–10, 2021, Virtual Event, Germany

5.3 IPv4/IPv6
SCION uses an IP/UDP underlay for direct communication with
its neighbours to prevent possible issues with legacy equipment in
between. Our implementation has support for both IPv6 and IPv4.
However, mixing them in operation, i.e. sending out a packet using
IPv6 that was received using IPv4, might not work as expected. As
the UDP checksum is mandatory when using IPv6 [11], but not
when using IPv4, we cannot expect that the checksum on incoming
IPv4 packets is correct. At the same time we cannot compute a
complete checksum, as this includes the complete payload and we
only have access to the parsed headers.

Enabling both IPv4 and IPv6 at the same time in the implemen-
tation also requires more resources, that could otherwise be used
to support more entries in the MAC verification table.

5.4 Limitations
Currently, we do not yet support all SCION functionality. For ex-
ample, peering or the generation of SCMP error messages is not
implemented yet. Additionally, with the EPIC [15] and COLIBRI [2]
protocols that could add additional security and QoS to SCION, the
cryptographic MACs in the hop fields will be unique per packet.
As a result, for those protocols we would no longer be able to make
use of the approach where we store the complete hop fields in a
table for verification. If those protocols would be used, depending
on what part of the traffic uses them, a solution might be to forward
the corresponding packets to the control plane at the switch for
verification or to an external node that does provide cryptographic
support on hardware. Ideally, this functionality would be included
in the data plane on the switch itself, e.g. by adding support for
cryptography or allowing to add custom functionality through
additional FPGAs.

6 EVALUATION
6.1 Hop fields
If we take the default settings for beaconing, i.e. beaconing at a five-
second interval and a validity time of about six hours, we would
need to store around 4,250 hop fields per combination of upstream
path and downstream interface. With support for both IPv4 and
IPv6, we can currently store about 160,000 hop fields and with
support for only IPv4 or IPv6, we can store about 200,000 hop fields.
In the latter case, we can, for example, support three upstream paths
and fifteen downstream interfaces. In practice this will depend on
the exact beaconing policy and settings used. Note that there might
still be room for improvement, as we have not yet optimised the
set-up so as to maximise the MAC verification table capacity. Also,
the number of supported hop fields might be higher if there is more
than one border router in the AS. Also note that we did not take
into account the one-hop paths here, but there are unlikely to be
many of them, and we could use a relatively short expiration time
for their hop fields.

6.2 Test setup
We started by testing the implementation on the Tofino software
model to verify its functionality. Once that worked, we knew that
the implementation would also run on the actual hardware. To run

AS 110
25G

25G

25G

100G

AS 112

Tofino
3.2 Tb/s

25G

AS 111

Tofino
3.2 Tb/s

Tofino
3.2 Tb/s

Figure 4: The topology with which we tested our implemen-
tation on our testbed. In this topology AS 112 is the core of
the isolation domain, which all ASs are part of.

Table 1: Rates observed on the 100G link to AS 112, when
traffic is generated and processed in AS 110. The hop field
that is used for processing is the last but one in the list.

#hop fields payload (bytes) Mpps Mbps
2 0 90.57 99999.7

128 46.81 99630.9
1024 10.73 99817.7

17 0 39.28 99943.3
128 27.86 99435.6
1024 9.30 99920.9

33 0 21.43 87434.6
128 19.57 99903.5
1024 8.13 99881.4

our implementation in practice, we made use of the 2STiC testbed
consisting of P4 programmable equipment at different sites [7]. We
used three Edgecore Wedge 100BF-32X switches, which have 32
QSFP28 ports supporting up to 100 Gbit/s per port. In total, each
switch has a maximum throughput of 3.2 Tbit/s.

We ran our implementation on a small topology consisting of
three SCION ASs at different sites of our testbed (Fig. 4). Every
SCION AS consists of one of the programmable switches above
to act as the border router and one server connected to provide
the other SCION services. With this setup, we showed that the
implementation works in a practical scenario and were able to
setup communication between all the different ASs.

6.3 Performance
We performed some initial performance tests using the internal
traffic generator on the switch located in AS 110. The packets
that are generated contain a hop field containing information to
forward the packet to AS 112. This way we use the dedicated 100G
link between the two ASs and measure at what speed we receive
packets at the switch in AS 112, and thus at what speed packets are
processed in the P4 implementation. We tested this with only IPv4
support enabled and for different number of hop fields and payload
sizes. As can be observed in the Table 1 packets are processed at
almost line-rate in most scenarios.



CoNEXT ’21, December 7–10, 2021, Virtual Event, Germany Joeri de Ruiter and Caspar Schutijser

7 RELATEDWORK
Součková [20] implemented the old version of the SCION protocol
for the NetFPGA, a NIC [3]. As FPGAs offer more flexibility than
ASICs in general, they were able to includemore functionality in the
data plane, such as the verification of the MAC and the expiration
time in the hop fields. However, a dedicated ASIC, such as the
Tofino, can offer specific functionality with higher performance. In
this case that means switching with more ports (up to 64) at higher
individual speeds (up to 100G).

Anapaya, an ETH Zurich spin-off company that develops SCION
products and operates a production SCION network, developed a
proprietary high-speed SCION border router running on commod-
ity x86 hardware [1].

Other new internet architectures which were implemented in P4
are Recursive InterNetwork Architecture (RINA) [16] and Named
Data Networking (NDN) [13]. Both architectures have a different
focus than SCION, but also include cryptographic operations in
the data plane. For RINA, a proof of concept was implemented
of an interior router for a so-called software switch [6]. The data
plane security components, for which cryptography is used, were
considered out of scope. A software switch runs on a commodity
server and therefore can be more flexible in functionality compared
to an ASIC, but does not achieve similar performance. For instance,
there are no hard limits on the number of state transitions in the
parser and cryptographic operations can be performed. For NDN,
there are several P4 implementations [8, 17, 19], all for a software
switch. In [14], a modified NDN architecture is proposed, which can
be programmed in P4. To achieve this, a new P4 target architecture
is introduced. The target architecture is typically fixed on ASICs,
but it can be changed on FPGA-based targets.

In [9], the authors work around the lack of cryptographic op-
erations in the Intel Tofino by sending IPsec packets through the
control plane (i.e., the x86 CPU) or to a separate crypto host. As a
result, AES operations can be performed but not at line-rate. This
is a similar approach as we proposed when implementing the EPIC
and COLIBRI extensions. In [10], the authors ran into limitations
of the NetFPGA when implementing the MACsec protocol in P4.

In [5], an approach is introduced to run AES in the data plane on
programmable switches. Such an approach might make it possible
in the future to verify hop fields in the data plane on the Tofino.
However, at the moment it is not suitable for our use case due to
its performance and resource usage.

8 CONCLUSION
With our implementation, we have shown the strength and flexi-
bility of P4 and programmable network devices, which allowed us
to run an implementation of a complex protocol such as SCION
protocol directly on an ASIC. At the same time, we have shown that
we can run SCION on hardware at high speeds, with a first analysis
already showing we can almost completely saturate a 100G link. In
the process we also established several guidelines that would gen-
erally help with making protocols more friendly to be implemented
on hardware, namely:

• Use explicit lengths
• Do not use absolute offsets
• Limit the usage of variable length fields

• Do not use complex data structures, such as nested lists

In future work we want to optimise the implementation fur-
ther and perform a more extensive performance analysis. Also we
would like to make our implementation more feature-complete and
add support for the EPIC and COLIBRI protocols, which require
per-packet cryptographic operations and therefore introduce new
challenges.

ACKNOWLEDGMENTS
This work is part of the 2STiC research program (https://www.2stic.
nl/).

REFERENCES
[1] [n.d.]. Anapaya CORE. https://www.anapaya.net/anapaya-core
[2] [n.d.]. COLIBRI Service Design. https://scion.docs.anapaya.net/en/latest/

ColibriService.html
[3] [n.d.]. NetFPGA. https://netfpga.org/site/#/systems/1netfpga-sume/details/
[4] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer

Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George Varghese, and
David Walker. 2014. P4: Programming protocol-independent packet processors.
SIGCOMM Comput. Commun. Rev. 44, 3 (2014), 87–95.

[5] Xiaoqi Chen. 2020. Implementing AES Encryption on Programmable Switches via
Scrambled Lookup Tables. In Proceedings of the Workshop on Secure Programmable
Network Infrastructure (Virtual Event, USA) (SPIN ’20). Association for Computing
Machinery, New York, NY, USA, 8–14. https://doi.org/10.1145/3405669.3405819

[6] Carolina Fernández, Sergio Giménez, Eduard Grasa, and Steve Bunch. 2020. A
P4-Enabled RINA Interior Router for Software-Defined Data Centers. Computers
9, 3 (2020). https://doi.org/10.3390/computers9030070

[7] Paola Grosso, Cristian Hesselman, Luuk Hendriks, Joseph Hill, Stavros Konstan-
taras, Ronald van der Pol, Victor Reijs, Joeri de Ruiter, and Caspar Schutijser. 2021.
A National Programmable Infrastructure to Experiment with Next-Generation
Networks. In 2021 IFIP/IEEE International Symposium on Integrated Network Man-
agement (IM). 778–782.

[8] Xingchang Guo, Ningchun Liu, Xindi Hou, Shuai Gao, and Huachun Zhou. 2021.
An Efficient NDN Routing Mechanism Design in P4 Environment. In 2021 2nd
Information Communication Technologies Conference (ICTC). IEEE, 28–33. https:
//doi.org/10.1109/ICTC51749.2021.9441639

[9] Frederik Hauser, Marco Häberle, Mark Schmidt, and Michael Menth. 2020. P4-
IPsec: Site-to-Site and Host-to-Site VPNWith IPsec in P4-Based SDN. IEEE Access
8 (2020), 139567–139586. https://doi.org/10.1109/ACCESS.2020.3012738

[10] Frederik Hauser, Mark Schmidt, Marco Häberle, and Michael Menth. 2020. P4-
MACsec: Dynamic TopologyMonitoring andData Layer ProtectionWithMACsec
in P4-Based SDN. IEEE Access 8 (2020), 58845–58858. https://doi.org/10.1109/
ACCESS.2020.2982859

[11] Bob Hinden and Dr. Steve E. Deering. 1998. Internet Protocol, Version 6 (IPv6)
Specification. RFC 2460. https://doi.org/10.17487/RFC2460

[12] Intel. [n.d.]. Intel® Tofino™ Series Programmable Ethernet Switch
ASIC. https://www.intel.com/content/www/us/en/products/network-
io/programmable-ethernet-switch/tofino-series.html.

[13] Van Jacobson, Diana K. Smetters, James D. Thornton, Michael F. Plass, Nicholas H.
Briggs, and Rebecca L. Braynard. 2009. Networking Named Content. In Proceed-
ings of the 5th International Conference on Emerging Networking Experiments and
Technologies (Rome, Italy) (CoNEXT ’09). Association for Computing Machinery,
New York, NY, USA, 1–12. https://doi.org/10.1145/1658939.1658941

[14] Ouassim Karrakchou, Nancy Samaan, and Ahmed Karmouch. 2020. ENDN: An
Enhanced NDN Architecture with a P4-ProgrammabIe Data Plane. In Proceedings
of the 7th ACM Conference on Information-Centric Networking (Virtual Event,
Canada) (ICN ’20). Association for Computing Machinery, New York, NY, USA,
1–11. https://doi.org/10.1145/3405656.3418720

[15] Markus Legner, Tobias Klenze, MarcWyss, Christoph Sprenger, and Adrian Perrig.
2020. EPIC: Every Packet Is Checked in the Data Plane of a Path-Aware Internet. In
29th USENIX Security Symposium (USENIX Security 20). USENIX Association, 541–
558. https://www.usenix.org/conference/usenixsecurity20/presentation/legner

[16] Vincenzo Maffione, Francesco Salvestrini, Eduard Grasa, Leonardo Bergesio, and
Miquel Tarzan. 2016. A software development kit to exploit RINA programma-
bility. In 2016 IEEE International Conference on Communications (ICC). IEEE, 1–7.
https://doi.org/10.1109/ICC.2016.7510711

[17] Rui Miguel, Salvatore Signorello, and Fernando M. V. Ramos. 2018. Named
Data Networking with Programmable Switches. In 2018 IEEE 26th International
Conference on Network Protocols (ICNP). 400–405. https://doi.org/10.1109/ICNP.
2018.00055

https://www.2stic.nl/
https://www.2stic.nl/
https://www.anapaya.net/anapaya-core
https://scion.docs.anapaya.net/en/latest/ColibriService.html
https://scion.docs.anapaya.net/en/latest/ColibriService.html
https://netfpga.org/site/#/systems/1netfpga-sume/details/
https://doi.org/10.1145/3405669.3405819
https://doi.org/10.3390/computers9030070
https://doi.org/10.1109/ICTC51749.2021.9441639
https://doi.org/10.1109/ICTC51749.2021.9441639
https://doi.org/10.1109/ACCESS.2020.3012738
https://doi.org/10.1109/ACCESS.2020.2982859
https://doi.org/10.1109/ACCESS.2020.2982859
https://doi.org/10.17487/RFC2460
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series.html
https://doi.org/10.1145/1658939.1658941
https://doi.org/10.1145/3405656.3418720
https://www.usenix.org/conference/usenixsecurity20/presentation/legner
https://doi.org/10.1109/ICC.2016.7510711
https://doi.org/10.1109/ICNP.2018.00055
https://doi.org/10.1109/ICNP.2018.00055


Next-generation internet at terabit speed: SCION in P4 CoNEXT ’21, December 7–10, 2021, Virtual Event, Germany

[18] Adrian Perrig, Pawel Szalachowski, Raphael M. Reischuk, and Laurent Chuat.
2017. SCION: A Secure Internet Architecture. Springer. https://doi.org/10.1007/978-
3-319-67080-5

[19] Salvatore Signorello, Radu State, Jérôme François, and Olivier Festor. 2016.
NDN.p4: Programming information-centric data-planes. In 2016 IEEE NetSoft

Conference and Workshops (NetSoft). IEEE, 384–389. https://doi.org/10.1109/
NETSOFT.2016.7502472

[20] Kamila Součková. 2019. FPGA-based line-rate packet forwarding for the SCION
future Internet architecture. Master’s thesis. ETH Zurich.

https://doi.org/10.1007/978-3-319-67080-5
https://doi.org/10.1007/978-3-319-67080-5
https://doi.org/10.1109/NETSOFT.2016.7502472
https://doi.org/10.1109/NETSOFT.2016.7502472

	Abstract
	1 Introduction
	2 P4
	3 SCION
	4 Protocol Issues and Changes
	5 Design and implementation
	5.1 Dealing with cryptography
	5.2 Parsing hop-fields
	5.3 IPv4/IPv6
	5.4 Limitations

	6 Evaluation
	6.1 Hop fields
	6.2 Test setup
	6.3 Performance

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

