Preparing DNSSEC for quantum computing

Moritz Müller | Nordic Domain Days | 2022-05-10

1

Just to be sure everyone is on the same page ...

- DNSSEC adds **authenticity** and **integrity** to the DNS
- Domain operators **sign** their domain name using **cryptographic algorithms**
- Recursive resolvers can be sure that they've received the correct information if they **validate** the **signatures**

Attacking DNS(SEC), hypothetically

- 1) Steal secret key used for signing a domain name
- 2) Create fake resource records e.g., with a malicious IP address
- 3) Sign fake resource record with the stolen key
- 4) Perform "regular" cache poisoning attack against a recursive resolver
- \rightarrow The resolver believes that the fake record is valid

Attacking DNS(SEC), hypothetically

- 1) Steal **Recreate** secret key used for signing a domain name
- 2) Create fake resource records e.g., with a malicious IP address
- 3) Sign fake resource record with the stolen key
- 4) Perform "regular" cache poisoning attack against a recursive resolver
- \rightarrow The resolver believes that the fake record is valid

A Quantum Computer

- Can run Shor's algorithm
- *Could* break the keys of all cryptographic algorithms currently used in DNSSEC
- Unclear if and when a powerful enough computer exists

Why bother now?

Things take time:

- 1) Finding a suitable quantum-safe algorithm
- 2) Adapting it for DNSSEC
- 3) Rolling it out on a larger scale

7

Algorithm	Approach	Private key	Public key	Signature	Status
Crystals-Dilithium-II	Lattice	2.8kB	1.3kB	2.4kB	Finalist
Falcon-512	Lattice	1.3kB	0.9kB	0.7kB	Finalist
Rainbow-I	Multivariate	101kB	158kB	64B	Finalist
RedGeMSS-128	Multivariate	16B	375kB	36B	Alternate
Sphincs+-128s	Hash	64B	32B	8kB	Alternate
Picnic-L1-FS	Hash/ZKP	16B	32B	33kB	Alternate
EdDSA-Ed22519	Elliptic curve	64B	32B	64B	Currently used

Security level ~ 1, Source https://csrc.nist.gov/News/2020/pqc-third-round-candidate-announcement

Algorithm	Approach	Private key	Public key	Signature	Status
Crystals-Dilithium-II	Lattice	2.8kB	1.3kB	2.4kB	Finalist
Falcon-512	Lattice	1.3kB	0.9kB	0.7kB	Finalist
- Rainbour I	Multivariato	101kD	150kB	CAD T	Finalist
PodCoMSS 129	Multivariato	16D	orely D	96 <u>P</u>	Altornato
Sphincs+-128s	Hash	64B	32B	8kB	Alternate
Picnic-L1-FS	Hash/ZKP	16B	32B	33kB	Alternate
EdDSA-Ed22519	Elliptic curve	64B	32B	64B	Currently used

 $Security\ level \sim 1,\ Source\ https://csrc.nist.gov/News/2020/pqc-third-round-candidate-announcement$

KISS: Keep it Small, Stupid

→Large DNS messages →Fragmentation → Increased RTTs, packet loss, and security vulnerability

Algorithm	Approach	Private key	Public key	Signature	Status
Crystals-Dilithium-II	Lattice	2.8kB	1.3kB	2.4kB	Finalist
Falcon-512	Lattice	1.3kB	o.9kB	0.7kB	Finalist
Rainbow I	Multivariato	101kD	150kD		Finalist
PodCoMSS 129	Multivariato	16D		96 <u>P</u>	Altornato
Sphincs+-128s	Hash	64B	32B	8kB	Alternate
Picnic-L1-FS	Hash/ZKP	16B	32B	33kB	Alternate
EdDSA-Ed22519	Elliptic curve	64B	32B	64B	Currently used

Security level ~ 1, Source https://csrc.nist.gov/News/2020/pqc-third-round-candidate-announcement

	Algorithm	Approach	Private key	Public key	Signature	Status
C	rystals-Dilithium-II	Lattice	2.8kB	1.3kB	2.4kB	Finalist
	Falcon-512	Lattice	1.3kB	0.9kB	0.7kB	Finalist
	Rainbow I	Multivariato	tothD			Finalist
	RedCoMSS 128	Multivariato	16D	orch D	<u> 962</u>	Altornato
	Sphincs+-128s	Hash	64B	32B	8kB	Alternate
	Picnic-L1-FS	Hash/ZKP	16B	32B	33kB	Alternate
	EdDSA-Ed22519	Elliptic curve	64B	32B	64B	Currently used

Security level ~ 1, Source https://csrc.nist.gov/News/2020/pqc-third-round-candidate-announcement

1) Finding a suitable quantum-safe algorithm

2) Adapting it for DNSSEC

3) Rolling it out on a larger scale

1) Finding a suitable quantum-safe algorithm

WIP

2) Adapting it for DNSSEC

3) Rolling it out on a larger scale

1) Finding a suitable quantum-safe algorithm

2) Adapting it for DNSSEC

3) Rolling it out on a larger scale

15

WIP

WIP

1) Finding a suitable quantum-safe algorithm

2) Adapting it for DNSSEC

3) Rolling it out on a larger scale

WIP

WIP

X

Is there something operators can do?

- Make sure that you follow current DNS best practices
- Make sure that you follow current DNSSEC best practices

Open Questions

- Are messages above 1.2kB but smaller than 64kB really that bad?
- What about performance?
- If and how could hash based algorithms deployed?
- Do we have to move away entirely from the current DNSSEC model, and should we rely on KEMs?
- When do we really need to get moving?

Are there any questions?

Follow us Image: sidnlabs.nl Image: @moritzem_ Thank you for your attention!

