Automated detection of malicious .nl-registrations A case study for responsible ML

Thymen Wabeke | ONE Conference

18 October 2022

Abuse regularly involves recent registrations

UTC 2022-09-13 20:11:44 (Using a proxy in nl)

Log in bij Mijn ING - ING Bankieren

Finding the needle in the haystack

Goal: Identify registrations analysts should review

Results so far

- 3 algorithms
- 3 develop & evaluate iterations
- Various training paradigms
- Current prototype is used daily

Today:

• 4 lessons learned

Zekerheid score	0.59	
	Houder	Admin-C
Name	Haantje de Voorste	Haantje d
Address	Meander 501, 6825 MD, Arnhem, NL	Meander
Email	sidnlabs@sidn.nl	sidnlabs@
Registrar	The Example Registrar N.V.	
Reseller	Great Reseller B.V.	
Registration date	2022-10-03 06:36:40	
Name servers	ns1.sidnlabs.nl, ns2.sidnlabs.nl	
	Comment	
Reset annotation Previous	Houder ingeschreven bij KvK	Label ✓ High-risk registration □ Registration invalid

Effect of feedback loop (1/2)

Effect of feedback loop (2/2)

Lesson 1: Speak the same language

- Problem formulation^[1]
 - Identify high-risk domain names?
 - Identify inaccurate registration data?
- Well-defined outcomes
 - What does "high-risk" mean?
 - Does everyone make the same judgement?

Determine ML performance (1/2)

Determine ML performance (2/2)

Lesson 2: Benchmark ML against non-ML baseline

- Complex ML algorithms do not necessarily outperform simple ones and may have downsides (e.g., lack of explainability, higher costs)^[2]
- Adding a non-ML baseline makes pros and cons of using ML explicit

Evaluation using common ML metrics (1/2)

- Recall = 0.95 (sensitivity)
- Precision = 0.86
- Specificity = 0.85

		Predicted		
		Positive	Negative	Σ
	Positive	95	5	100
Actual	Negative	15	85	100
	Σ	110	90	

Evaluation using common ML metrics (2/2)

- Recall = 0.95 (sensitivity)
- Precision = 0.86
- Specificity = 0.85

		Predicted		
		Positive	Negative	Σ
	Positive	95	5	100
Actual	Negative	15	85	100
	Σ	110	90	

- Expected false negatives = 1
- Expected false positives = 418

	Percentage	Count
Not reported	99.95%	2,786
Reported	0.5%	14
Σ	100%	2,800

Lesson 3: Learn from other disciplines

- Common ML metrics do not tell the whole story, because performance depends on abuse prevalence
- Adopt metrics from medical research: [3]
 - Positive and Negative Predictive Value (PPV, PNV)
 - Pre- and posttest probability

Accurate vs rapid intervention

Lesson 4: Discuss technical choices and their impact

- Technical choices often influence the operation and policy (e.g., threshold, features to include)
- Responsible ML is only possible if decisions are made explicit and discussed from different points of view

4 lessons learned

Speak the same language

Benchmark against non-ML baseline

Learn from other disciplines

Discuss technical choices and impact

Future work

- Improve "operational prototype"
- Joint evaluation and development with DNS Belgium (.be)
- Support peer registries by publishing our methodology

4 lessons learned for responsible machine learning

Thymen Wabeke Research engineer thymen.wabeke@sidn.nl

www.sidnlabs.nl | stats.sidnlabs.nl

Follow us

SIDN.nl
@SIDN
SIDN

Q&A

www.sidnlabs.nl | stats.sidnlabs.nl

Thymen Wabeke Research engineer thymen.wabeke@sidn.nl

