

Rodrigo Bazo, Leonardo Boldrini, Cristian Hesselman, Paola Grosso

Introduction

Introduction

- Demands for a more trustworthy Internet are constantly increasing
- Emerging critical service providers are one of the main drivers behind such demand
- Although a success, the current Internet infrastructure lacks essential capacities
 - E.g. users cannot control nor verify their data paths
- Goal: Define needed components and functions to achieve transparency, accountability and controllability in Inter-domain networks.

New Internet Security Requirements

New Internet Security Requirements

- Future Internet applications require higher levels of trust from the Internet
 - Cyber-physical and critical applications services have direct impact in people's lifes

- We analyze the requirements based on three essential pillars:
 - Transparency: Capability of a network to provide information about its infrastructure
 - Accountability: Capability of a network to describe the way it processes data
 - Controllability: Capability of a network to allow their users to specify how the network (or chains of networks) must handle their data

Smart Grid Example

New Internet Security Requirements

- Involved parties will require more transparency and accountability from networks
 - Particularly in multi-domain scenarios (e.g. Internet)
- Involved parties require more control over how the network transports their data

Existing Tech

Existing Technologies

• There are technologies there that partially solve our problem. But not as a whole.

Solution	Transparency	Accountability	Controllability
PDP	\checkmark	\checkmark	x
SR	x	x	\checkmark
PAN	X	\checkmark	\checkmark

UPIN Framework

UPIN Framework

- The framework consists of a group of functions and components that, when coupled together, enable our requirements on Transparency, Accountability and Controllability to be fulfilled
- The UPIN framework does not mandate the underlying data plane technology
- UPIN stand for User-driven Path Verification and Control in Inter-domain networks

UPIN Framework Components

Component	Transparency	Accountability	Controllability
Domain Explorer	\checkmark	\checkmark	\checkmark
Path Controller	x	x	\checkmark
Path Tracer	\checkmark	\checkmark	x
Path Verifier	\checkmark	\checkmark	x
Frontend	\checkmark	\checkmark	\checkmark

UPIN Framework

Domain Explorer

- Retrieves and stores metadata from it's domains equipment properties, e.g.:
 - Routers location
 - Routers source-code and firmware version
- Has a local scope only
- Provides up-to-date local information for other domains through the Frontend

Path Controller

• Forwards user's data based on specified preferences

Has local scope only

Path Tracer

• Gathers real-time measurements of data plane traffic and stores it for verification purposes

Has local scope only

Path Verifier

- Checks if user's preferences are being respected
 - Either in real-time or a posteriori

 Feedbacks information to other domains in order to enable end-to-end compliance check

Frontend

 Provides the interface for the user to set up his preferences

 Provides the interface for domains to exchange information

Initial Experiments

Initial Experiments

- Initial experiments focus on single-domain scenario and on the Path Controller component
- Using Segment Routing we enable users to steer their traffic through specific Virtual Network Functions (e.g. Firewall and Packet Mirror)
- In this experiments:
 - A traffic generator emulates the User
 - A SDN controller which gathers the network topology and deals with external instructions

Initial Experiments

- The main testbed for experimentation is the 2STiC testbed
 - Multi-domain star-shaped network of P4 programmable routers located in the Netherlands
- Path Verification experiments with P4 are also under development and will be deployed on the testbed

Final Remarks

Final Remarks

- The framework presented in this work focuses on assessing the lack of Transparency, Accountability and Controllability in Inter-domain networks, such as the Internet
- We observe that network operators must share meta-data about their infrastructure in order to achieve this
- Our presented architecture organizes required network functions and components that pave the road towards a Responsible Internet

Open Challenges

- Investigate how to disclose network infrastructure information (e.g. router attributes) without opening up potential security breaches
- Investigate incentives and benefits (e.g. financial or performance) of disclosing information and adopting the proposed solution
- Verification and attestation of information provided by other domains are a major point of interest as well

Thanks! Questions?

This research received funding from the Dutch Research Council (NWO)