Radboud University §

MiNe s

[
Lerree

MASTER’S THESIS COMPUTING SCIENCE
IN CYBER SECURITY

FINGERPRINTING TLS IMPLEMENTATIONS USING
MODEL LEARNING

Author: Supervisor:
Erwin Janssen Frits Vaandrager

Daily supervisor:
Joeri de Ruiter

Second reader:

Erik Poll

Radboud University Nijmegen
Institute for Computing and Information Sciences
Digital Security

March 19, 2021

Abstract

We developed a new approach for generating and matching fingerprints for network protocol
implementations and applied this to TLS server implementations. For generating the finger-
prints we used model learning (a.k.a. active automata learning) to infer the state machine
models of more than 200 different versions of two major TLS implementations. To perform
the identification, we applied and compared two different methods. One method uses the
adaptive distinguishing graph (ADG) algorithm, a direct generalization of Lee & Yannakakis
algorithm for adaptive distinguishing sequences. The ADG pre-computes a decision tree with
fixed inputs, and each model is identified through a unique input-output sequence. The other
method is the heuristic decision tree (HDT), a new method that we present here. The HDT
compares all models simultaneously during the identification and dynamically chooses which
input to send based on heuristics. It is highly configurable and extendable, allowing multiple
(and custom) input selection algorithms. We benchmarked and compared both methods using
the models we learned. The performance of the two methods were comparable in our tests and
we concluded that both the ADG and the HDT are capable of finding efficient input sequences
to perform fingerprint matching.

Contents

1 Introduction 1
2 Preliminaries 3
2.1 Transport Layer Security 3
2.1.1 Architecture 4

2.1.2 Record protocol 5

2.1.3 Handshake protocolo oo, 7

2.2 State machines 11
2.2.1 Mealy Machine 11

2.2.2 Model learning L 11

2.2.3 State identification L 12

3 Related work 14
3.1 Model learning L 14
3.2 Fingerprinting TLS 14
3.2.1 Fingerprinting TLS usage of client and server applications 15

3.2.2 Fingerprinting TLS server implementations 15

3.3 Formal fingerprint matchingo oL 15

4 Solution overview 18
4.1 Target protocol versions Lo 18
4.2 Architecture e e 18
4.3 Implementation details oL oo 20

5 Building the implementations 21
5.1 Build manager 22
5.1.1 Overviewo 23

5.1.2 Details e 23

5.2 Build components Lo 24
5.2.1 OVerviewo e e e 25

5.2.2 Details. oL e 25

5.3 Adding a new implementation Lo 27
5.3.1 Overview e 27

5.3.2 Details 27

5.4 Discussion e e 28
54.1 New versions oo e 28

5.4.2 Maintenance e e e e 28

54.3 Futureworko 29

6 Automated learning 30
6.1 Learn manager i e e e e e e e 30

ii

6.1.1 Overview e

6.1.2 Details. e
6.2 Learning setup
6.2.1 Overview e
6.2.2 Details
6.3 Learning alphabet oo o
6.4 Learningresults. L L
6.5 Discussion e e
6.5.1 Implementation details oL
6.5.2 Models e
Identification
7.1 General Processo
7.1.1 Removing duplicate models L.
7.1.2 Construct model tree oL
7.1.3 Identification
7.2 Running example oL Lo
7.3 Distinguishing sequences L Lo
7.3.1 Pairwise distinguishing sequences oL
7.3.2 Lee & Yannakakis
7.3.3 Adaptive distinguishing graph
7.3.4 Integrating ADG
7.4 Heuristic decision tree L L
7.4.1 Normalize models
7.4.2 Identification procedure Lo oL
7.4.3 Input selection
744 Example.o
7.4.5 Futurework e
7.5 Comparison Lo
7.5.1 Benchmarksetup L oo
7.5.2 Benchmark results o 0o

8 Conclusion

References

A Details of learned models

A1 TLS 1.0 . .o e
A2 TLS 1.1 . .o e
A3 TLS 1.2 . . o e

Model weights

B.1 TLS 1.0 o
B.2 TLS 1.1 . . . e
B3 TLS 1.2 . . . o e

Benchmark results per model

C.1 TLS 1.0 e e
C.1.1 Number ofinputs.
C.1.2 Number ofresets
C.1.3 Computation time Lo

C.2 TLS 1.1 . . . e e
C.2.1 Number ofinputs.
C.2.2 Number ofresets

iii

40
40
41
41
42
42
42
43
43
46
48
49
49
o1
52
95
55
o7
58
60

66
69
72
72

73
76

C.2.3 Computation time o 91

C.3 TLS 1.2 . . . e 93
C.3.1 Number ofinputs. 93
C.3.2 Numberofresets e 95
C.3.3 Computation time e 97

D Weighted benchmark statistics 99

D.1 Weight function “equal” L o 99
D.1.1 Number ofinputs. 99
D.1.2 Number ofresets o 102
D.1.3 Computation time 104

D.2 Weight function “count” 106
D.2.1 Number ofinputs. 106
D.2.2 Numberofresets 108
D.2.3 Computation time oo 110

D.3 Weight function “recent” L 112
D.3.1 Numberofinputs. 112
D.3.2 Number ofresets 114
D.3.3 Computation time 116

iv

List of Tables

2.1 TLS versions 0 i e e e e e 3
2.2 TLS terminology, taken from [25] 4
3.1 Taxonomy of network fingerprinting problems [32] 16
6.1 Learning alphabet Lo 35
6.2 Models learned per implementation per TLS version 36
6.3 Number of unique models per TLS version 36
6.4 Number of unique models per implementation 37
7.1 Different weight functions applied to models learned for TLS 1.2 59
7.2 Number of nodes of each model tree 60
7.3 Number of inputs for each model of TLS 1.2. 61
7.4 Number of inputs, distribution of values for each model of TLS 1.2 with HDT
Random e 61
7.5 Benchmark summary: Number of inputs with weight function ‘equal’ for TLS 1.2 63
A.1 Details of models learned for TLS 1.0 72
A.2 TImplementation versions of models learned for TLS 1.0 72
A.3 Details of models learned for TLS 1.1 73
A.4 Tmplementation versions of models learned for TLS 1.1 75
A.5 Details of models learned for TLS 1.2 76
A.6 Implementation versions of models learned for TLS 1.2 7
C.1 Number of inputs for each model of TLS1.0. 81
C.2 Number of inputs, distribution of values for each model of TLS 1.0 with HDT
Random e 82
C.3 Number of resets for each model of TLS 1.0 83
C.4 Number of resets, distribution of values for each model of TLS 1.0 with HDT
Random e 84
C.5 Time in seconds for each model of TLS 1.0 85
C.6 Time in seconds, distribution of values for each model of TLS 1.0 with HDT
Random e 86
C.7 Number of inputs for each model of TLS 1.1 87
C.8 Number of inputs, distribution of values for each model of TLS 1.1 with HDT
Random 88
C.9 Number of resets for each model of TLS 1.1 89
C.10 Number of resets, distribution of values for each model of TLS 1.1 with HDT
Random e 90
C.11 Time in seconds for each model of TLS 1.1 91

C.12 Time in seconds, distribution of values for each model of TLS 1.1 with HDT

Random e 92

C.13 Number of inputs for each model of TLS 1.2. 93
C.14 Number of inputs, distribution of values for each model of TLS 1.2 with HDT

Random 94
C.15 Number of resets for each model of TLS 1.2 95
C.16 Number of resets, distribution of values for each model of TLS 1.2 with HDT

Random e 96
C.17 Time in seconds for each model of TLS 1.2 97
C.18 Time in seconds, distribution of values for each model of TLS 1.2 with HDT

Random e e e 98

D.1 Benchmark summary: Number of inputs with weight function ‘equal’ for all

TLS versions e e e 99
D.2 Benchmark summary: Number of inputs with weight function ‘equal’ for TLS 1.0 99
D.3 Benchmark summary: Number of inputs with weight function ‘equal’ for TLS 1.1 99
D.4 Benchmark summary: Number of inputs with weight function ‘equal’ for TLS 1.2100
D.5 Benchmark summary: Number of resets with weight function ‘equal’ for all

TLS versions o e e 102
D.6 Benchmark summary: Number of resets with weight function ‘equal’ for TLS 1.0102
D.7 Benchmark summary: Number of resets with weight function ‘equal’ for TLS 1.1102
D.8 Benchmark summary: Number of resets with weight function ‘equal’ for TLS 1.2102
D.9 Benchmark summary: Time in seconds with weight function ‘equal’ for all TLS

VETSIONS . . v v v vt e e e e e e e e e e e e e e e e e 104
D.10 Benchmark summary: Time in seconds with weight function ‘equal’ for TLS 1.0104
D.11 Benchmark summary: Time in seconds with weight function ‘equal’ for TLS 1.1104
D.12 Benchmark summary: Time in seconds with weight function ‘equal’ for TLS 1.2104
D.13 Benchmark summary: Number of inputs with weight function ‘count’ for all

TLS versions 106
D.14 Benchmark summary: Number of inputs with weight function ‘count’ for TLS 1.0106
D.15 Benchmark summary: Number of inputs with weight function ‘count’ for TLS 1.1106
D.16 Benchmark summary: Number of inputs with weight function ‘count’ for TLS 1.2106
D.17 Benchmark summary: Number of resets with weight function ‘count’ for all

TLS versions 108
D.18 Benchmark summary: Number of resets with weight function ‘count’ for TLS 1.0108
D.19 Benchmark summary: Number of resets with weight function ‘count’ for TLS 1.1108
D.20 Benchmark summary: Number of resets with weight function ‘count’ for TLS 1.2108
D.21 Benchmark summary: Time in seconds with weight function ‘count’ for all TLS

VEISIONS . . v v v v e e e e e e e e e e e e 110
D.22 Benchmark summary: Time in seconds with weight function ‘count’ for TLS 1.0110
D.23 Benchmark summary: Time in seconds with weight function ‘count’ for TLS 1.1110
D.24 Benchmark summary: Time in seconds with weight function ‘count’ for TLS 1.2110
D.25 Benchmark summary: Number of inputs with weight function ‘recent’ for all

TLS versions e e 112
D.26 Benchmark summary: Number of inputs with weight function ‘recent’ for TLS 1.0112
D.27 Benchmark summary: Number of inputs with weight function ‘recent’ for TLS 1.1112
D.28 Benchmark summary: Number of inputs with weight function ‘recent’ for TLS 1.2112
D.29 Benchmark summary: Number of resets with weight function ‘recent’ for all

TLS versions e e 114
D.30 Benchmark summary: Number of resets with weight function ‘recent’ for TLS 1.0114
D.31 Benchmark summary: Number of resets with weight function ‘recent’ for TLS 1.1114
D.32 Benchmark summary: Number of resets with weight function ‘recent’ for TLS 1.2114
D.33 Benchmark summary: Time in seconds with weight function ‘recent’ for all

TLS versions o e 116
D.34 Benchmark summary: Time in seconds with weight function ‘recent’ for TLS 1.0116
D.35 Benchmark summary: Time in seconds with weight function ‘recent’ for TLS 1.1116

Vi

D.36 Benchmark summary: Time in seconds with weight function ‘recent’ for TLS 1.2116

vii

List of Figures

2.1 TLS layers architecture o
2.2 Connection states in TLS 1.0. The dashed states are the pending states. . . .
2.3 TLS 1.0 handshake
24 TLS 1.3 handshake
2.5 A simple Mealy machine Lo o 1
2.6 Example of an adaptive distinguishing sequence for a finite-state machine [21] 13

—= O o O O

4.1 General flow of stageso 19
4.2 Overview of all components 19
5.1 Pipelinedesign 22
5.2 Components used for the build stage 22
5.3 Overview of the periodic build 23
5.4 Different repositories on Drone, 23
5.5 Pipelines in the Drone dashboard 26
6.1 Components used for the learn stage 30
6.2 Pipeline for learning L oL o 31
6.3 Conceptual learning setupo 33
6.4 Learning setup in practice L L Lo 33
6.5 Learning pipelineon Drone o . 35
6.6 Reduced model for OpenSSL 0.9.7 with TLS 1.0 38
7.1 Examplemodels 42
7.2 Conversion from separate to combined models 44
7.3 Example of an adaptive distinguishing sequence for a finite-state machine
(duplicate of Section 2.2.3) 45
7.4 Example models converted to a labeled transition system 47
7.5 Adaptive distinguishing graph of the example models 47
7.6 Model tree of the adaptive distinguishing graph for the example models . . . 48
7.7 Model A with normalized tree result 50
7.8 Heuristic decision tree for example models 51
7.9 Node encoding example for heuristic decision tree 52
7.10 Different weight functions applied to the example heuristic decision tree . . . 54
7.11 Gini impurities for the input selection of the first descent 56
7.12 Identification for example models 56
7.13 Benchmark results: Number of inputs with weight function ‘equal’ 64
D.1 Benchmark results: Number of inputs with weight function ‘equal’ 101
D.2 Benchmark results: Number of inputs with weight function ‘equal’ 103
D.3 Benchmark results: Computation time with weight function ‘equal’ 105
D.4 Benchmark results: Number of inputs with weight function ‘count” 107

viii

D.5
D.6
D.7
D.8
D.9

Benchmark results:
Benchmark results:
Benchmark results:
Benchmark results:
Benchmark results:

Number of inputs with weight function ‘count’

Computation time with weight function ‘count’
Number of inputs with weight function ‘recent’
Number of inputs with weight function ‘recent’
Computation time with weight function ‘recent’

ix

Chapter 1

Introduction

The Transport Layer Security (TLS) protocol is one of the cornerstones of secure communication
on the Internet. It is widely used to secure communication in a variety of settings, including
web browsing, email and virtual private networks. However, TLS is not without its flaws, and
vulnerabilities have been found in the past: both in the protocol itself [1, 5, 23], and in specific
software implementations [4, 6, 11, 12, 29].

It is beneficial to know if the TLS implementation used by a (web) server contains any known
vulnerabilities. For users this might affect the trust they have in the security of the connection,
and therefore the decision whether to share confidential information with this server or not.
Network operators or cloud providers also want to ensure that no vulnerable services are
present in their environment. If one would know the specific name and version of the TLS
implementation running on a server, it is possible to look up vulnerabilities in the CVE
database'. Unfortunately this information isn’t always straight-forward to come by, as the
TLS protocol does not define a standard way to include a version banner. As a result, an
alternative method is required: a way to fingerprint and identify a TLS server implementation.

Fingerprinting TLS has been a topic of previous research and this is done from multiple
angles. The focus is often on identifying a specific application, such as a piece of malware,
through its use of TLS. This can be done by creating a fingerprint based on the contents of
the TLS ClientHello or ServerHello message [16, 35, 36]. This method allows for passive
fingerprint collection and identification, but it is susceptible to small configurations differences
since it relies on the actual content of the message. A client or server with a different set of
supported cipher suites or extensions will lead to a different fingerprint result, even though
the underlying implementation might be the same. While this method is useful (and has been
applied successfully) for identifying specific applications, it is not suitable to create a detailed
fingerprint of the actual TLS implementation itself.

Fingerprints for the TLS implementations themselves can be created by looking at behavior
differences between implementations. Instead of passively looking at the TLS handshake
contents, this is an active approach: message sequences are sent to the target and the response
is recorded. This method looks more at the type of messages and less at their content, this
means configuration does not have as much impact on the identification process compared to
the content based method. Current implementations of this method make use of hand-picked
input sequences, and often send many sequences in order to perform an identification. The
downsides of these hand-picked sequences is also that creating new sequences is a manual task
that requires expert knowledge of the protocol.

In this thesis, we present a new approach for fingerprinting generation and matching for TLS

Thttps://cve.mitre.org/

https://cve.mitre.org/

server implementations leveraging multiple formal methods. The approach consists of two
steps. The first step is to generate fingerprints using model learning [39], a black-box analysis
technique where the internal protocol state machine of software is inferred by sending valid
messages in an arbitrary order. The learned model of an implementation, which is a Mealy
Machine, serves as its fingerprint. The second step is to use these fingerprints to determine
efficient input sequences that match the behavior of a given TLS implementation to the
correct model. We apply and compare two methods to automatically determine these inputs:
adaptive distinguishing graph (ADG) and heuristic decision tree (HDT). The ADG [7] is a
direct generalization of Lee & Yannakakis’ algorithm for computing adaptive distinguishing
sequence [21]. The HDT is a new method that we present in this thesis, it compares all
available models simultaneously and selects the inputs based on heuristics. While we focus on
the TLS protocol in this thesis, the approach we present is not specific to TLS and can be
applied to other protocols.

For a proof of concept we focused on two major TLS implementations: OpenSSL? and mbed
TLS3. Both implementations have a long history which gives us many versions to analyze. We
applied our approach to 134 versions of OpenSSL and 114 versions of mbed TLS for several
versions of the TLS protocol. To support our research and in attempt to future-proof our work,
we automated as much as possible. This includes pipelines that periodically fetch, build and
package new versions of each implementation and then learn their models. We also developed
a command line tool with the name tlsprint to support various tasks and perform the actual
identification.

The rest of this thesis is structured as follows. We start with some theoretical background in
Chapter 2, followed by an overview of related work in Chapter 3. In Chapter 4 we provide an
overview of how we implemented our solution, which is split up in independent stages. Each
stage is discussed in detail in its own chapter, starting with the build process in Chapter 5,
followed by the learning setup in Chapter 6 and lastly the comparison of the identification
methods in Chapter 7. We wrap up with a conclusion in Chapter 8.

2https://www.openssl.org/
3https://tls.mbed.org/

https://www.openssl.org/
https://tls.mbed.org/

Chapter 2

Preliminaries

This thesis builds upon different fields and theories. The two most significant are discussed in
this chapter: the TLS protocol in Section 2.1 and state machines in Section 2.2.

2.1 Transport Layer Security

In this section we will give an overview of the Transport Layer Security (TLS) protocol.
Readers who are familiar with TLS and its handshake protocol can safely skip this. For more
details we refer the reader to the specifications listed in Table 2.1.

TLS is a security protocol that “allows client/server applications to communicate over the
Internet in a way that is designed to prevent eavesdropping, tampering, and message forgery”
[25]. In a typical protocol run, the client and server set up a stateful connection through
a handshake procedure in which they (optionally) authenticate each other and negotiate a
session key. After the handshake, the client and server can securely exchange data. The
protocol is widely used to secure network communication, such web browsing (HTTPS), email
(SMTPS, IMAPS) and virtual private networks (OpenVPN). As a result of this widespread use,
TLS has been extensively studied, strengthened and extended over the years. It is generally
regarded as one of the most mature security protocols available.

The first version of TLS was published in 1999 as a successor of Secure Sockets Layer (SSL),
and it has received three updates since then. The most recent version, TLS 1.3, provides
significant changes to reduce complexity and improve security and performance. Table 2.1
shows when each version of TLS was released, and which RFC defines the specification.

Table 2.1: TLS versions

Version Year RFC

1.0 1999 22461
1.1 2006 43462
1.2 2008 52463
1.3 2018 8446*

The TLS standard defines some terminology, shown in Table 2.2 [25] which will also be used

Lhttps://tools.ietf.org/html/rfc2246
2https://tools.ietf.org/html/rfc4346
Shttps://tools.ietf.org/html/rfc5246
4https://tools.ietf.org/html/rfc8446

https://tools.ietf.org/html/rfc2246
https://tools.ietf.org/html/rfc4346
https://tools.ietf.org/html/rfc5246
https://tools.ietf.org/html/rfc8446

here for consistency.

Table 2.2: TLS terminology, taken from [25]

Term Definition

client The endpoint initiating the TLS connection.

connection A transport-layer connection between two endpoints.

endpoint Either the client or server of the connection.

handshake An initial negotiation between client and server that establishes the
parameters of their subsequent interactions within TLS.

peer An endpoint. When discussing a particular endpoint, “peer” refers to the
endpoint that is not the primary subject of discussion.

receiver An endpoint that is receiving records.

sender An endpoint that is transmitting records.

server The endpoint that did not initiate the TLS connection.

In the following sections, the different versions of the TLS protocol will be described in more
detail, starting with a high level view of the architecture and followed by the two primary
components of the TLS protocol: the record protocol and the handshake protocol. The
discussion will remain relatively high-level. For more details on each specific version, we refer
the reader to the appropriate RFC.

2.1.1 Architecture

TLS is a security protocol which follows a client-server model. It is application protocol
independent, which means that any application protocol (e.g. HTTP or DNS) can layer on top
of it without any modifications. From the application layer, TLS can be viewed as a black box
which transports data with certain security guarantees: application data goes in, encrypted
data is sent, and application data comes out at the other side. How the data is secured and
authenticated, and how the security parameters are established between the client and the
server, is the responsibility of the TLS protocol.

For the actual transmission of bytes, TLS is dependent on the underlying transport layer. TLS
requires a transport layer which provides a reliable, in-order data stream, which often means
TCP is used. There is also an adapted version of TLS that does not have these requirements,
called Datagram Transport Layer Security (DTLS) [27].

The TLS protocol aims to provide a secure channel with the following three properties [25, 26]:

e Authentication: Both endpoints can authenticate their peer using asymmetric cryp-
tography or a symmetric pre-shared key. This authentication is not mandatory, and
client authentication is often omitted. Since TLS 1.3, the server side of the channel is
always authenticated.

o Confidentiality: After the handshake procedure, all data sent over the channel is only
visible to the endpoints. TLS does not hide the length of the data sent, but endpoints
are able to pad the data if necessary.

e Integrity: An adversary cannot modify the data sent over the channel without being
detected by the endpoints.

These security properties should hold, even in the event that an adversary has complete control
over the network [25], and is able to drop, modify, and inject packets in the network.

While TLS can be treated as a single logical layer, it is actually composed of two layers itself,
where each layer uses its own sub-protocols. The upper layer protocols define the actual

communication (such as the handshake protocol and the application data protocol), and pass
their messages to the lower layer, which is home to the record protocol. The record protocol
uses the parameters established by the handshake protocol to protect traffic between the
communicating peers [25].

The TLS standards specify four protocols for the upper layer:

e Handshake: The handshake protocol is responsible for establishing the connection, set-
ting the proper security parameters in the record protocol, and optionally authenticating
the peer. This is one of the most important components of the TLS protocol. There
are two versions of the handshake protocol, the one used in TLS 1.0 to 1.2, and the one
introduced in TLS 1.3. We shall refer to these two different handshakes as the TLS 1.0
handshake and the TLS 1.3 handshake respectively.

e Change cipher spec: This protocol consists of a single message (also called
ChangeCipherSpec) and is used to “signal transitions in ciphering strategies” [26]. It is
used during the TLS 1.0 handshake.

e Alert: To indicate a connection closure or error, each endpoint can send an alert at
any time. Alert messages contain a description and a severity level (warning or fatal).
The specification states that a fatal alert should always terminate the connection, but
explicitly doesn’t state how a warning should be handled, which leaves room for ambiguity.
In TLS 1.3 this ambiguity is removed, as each alert should be treated as fatal.

e Application data: After the handshake, the application data protocol is used to
transmit the actual application data. This is done by passing the data directly to the
record protocol.

Compared with the handshake protocol, the other three upper layer protocols are quite simple.
As such, most of the specification of TLS deals with the record protocol and the handshake
protocol. Both will be discussed in more detail in the following sections.

2.1.2 Record protocol

The record protocol performs the heavy lifting when it comes to protecting the traffic between
client and server. When an upper layer wants to send a message, it passes the contents to
the record protocol. The record protocol then fragments the data into manageable blocks,
compresses, encrypts and signs these blocks, and then passes them to the transport layer.
Conversely, when the record layer receives data from the transport layer, this data is decrypted,
verified, decompressed, reassembled, and then passed to the upper layer [26]. This flow is
shown schematically in Figure 2.1.

The record protocol needs to keep track of the security parameters (the algorithms and their
parameters, including keys) used for a connection, which makes TLS a stateful protocol. In
the context of TLS the information about a connection is called the connection state. In the
TLS 1.0 handshake there are always four connection states for every peer: the current read
and write states, and the pending read and write states [26]. Each connection state has its
own set of security parameters, including different keys. All records are always processed using
the current read and write states: sending uses the write state, and receiving uses the read
state. The write state of client communicates with the read state of the server, and vice versa,
as can be seen in Figure 2.2a.

The current connection states cannot be mutated directly and instead, changes have to be
made through the pending states. The values of the pending connection states can be set
through the handshake protocol, and activated with the ChangeCipherSpec message. When
this activation message is sent the peer activates its pending write connection state, when it is
received the read connection state is switched. This is shown in Figure 2.2. This mechanism
allows renegotiation of the security parameters during an active session.

TLS Sender TLS Receiver
Upper Layer Upper Layer
Messages Messages
Fragment Reassemble
Record Protofol/ Record Protofkol/
TLSPlaintext TLSPlaintext
Compress Decompress
TLSCompressed TLSCompressed
Encrypt Decrypt
TLSCiphertext TLSCiphertext
b A

\'{ansmit Receive

Transport Layer

Figure 2.1: TLS layers architecture

Client Server

. Client write TLSCiphertext Server read .
TLSPlainText TLSPlainText

Client Client read Server write Server

Client Server
rooTTTTTTTTTTTT rooTTTTTTTTTTT
! Client write | ! Serverread |
] i] i
Client TLSPlainText Client read TLSCiphertext Server write TLSPlainText Server
Client write Server read
rooTTTTTTTTTTTTS
| Clientread | | Server write |
1 1 1 1
| S —— 1 | S —— 1

(b) Connection states after ChangeCipherSpec from client

Figure 2.2: Connection states in TLS 1.0. The dashed states are the pending states.

The ability to renegotiate the security parameters of an active session has been a source of
vulnerabilities in the past [42], as such TLS 1.3 forbids renegotiation [25]. This simplifies
the connections states: TLS 1.3 only has current read and write states. The parameters of
these states are set during the handshake, and cannot be modified after this point, making
renegotiation impossible.

The record protocol relies on the handshake protocol to set the security parameters. How this
is done, and how the handshake protocol works, is the topic of the next section.

2.1.3 Handshake protocol

The TLS Handshake Protocol allows the server and client to agree on a protocol version, select
cryptographic algorithms, optionally authenticate each other, and generate shared secrets
[25]. The handshake phase is critical, as most of the security for the rest of the connection
dependents on security parameters negotiated in this phase. The handshake protocol aims to
satisfy three properties (taken from [26]):

o “The peer’s identity can be authenticated using asymmetric, or public key, cryptography
(e.g., RSA, DSA, etc.). This authentication can be made optional, but is generally
required for at least one of the peers.”

o “The negotiation of a shared secret is secure: the megotiated secret is unavailable to
eavesdroppers, and for any authenticated connection the secret cannot be obtained, even
by an attacker who can place himself in the middle of the connection.”

o “The negotiation is reliable: mo attacker can modify the negotiation communication
without being detected by the parties to the communication.”

Because of these requirements, the handshake protocol is the most complicated part of the TLS
protocol. As mentioned before, the TLS handshake has remained largely the same since the
first version, but has received a major revision in version 1.3. Both versions will be discussed
in more detail below.

2.1.3.1 TLS 1.0 handshake

The normal flow of the TLS 1.0 handshake is shown in Figure 2.3. This handshake has
remained unmodified until the introduction of TLS 1.3 in 2018. Because it has remained
the same for so long, this handshake is often referred to as “the TLS handshake” in other
literature.

The client initiates the handshake by sending a ClientHello. In this message, the client
specifies which version of the TLS protocol it would like to use and includes a list of cipher
suites, compression methods and extensions it supports. The server then responds with a
ServerHello in which the server notifies the client which parameters (TLS version, cipher suite,
extensions, session ID etc.) the server has selected for this session. Optionally it then sends
its own certificate, additional key exchange data and/or a request for the client’s certificate.
It ends this sequence with a ServerHelloDone, which does not contain any additional data.

After receiving the data from the server, the client first verifies that it is valid (e.g. the
certificate is correct, it indeed supports the selected parameters, etc.). It then generates
its own part of the key share and computes the session key. Depending on what the server
requested, the client sends the required certificate or key exchange data, and then sends a
ChangeCipherSpec. As mentioned before, the ChangeCipherSpec message indicates a change
in ciphering strategies, which means the client will encrypt everything from this point forward
with the computed session key, starting with the Finished message. The Finished message
contains the hash of all handshake messages exchanged so far, so the peer can verify the
integrity of the handshake. Interestingly, the ChangeCipherSpec is primarily used during the

client server

ClientHello

Y

ServerHello
Certificate*
ServerKeyExchange*
CertificateRequest*
ServerHelloDone

A

Certificate*
ClientKeyExchange
CertificateVerify*
ChangeCipherSpec
{Finished}

Yoo Loy]

ChangeCipherSpec
{Finished}

A

{ApplicationData}

A
Y

client server
Legend
Symbol | Meaning
* Optional or situation-dependent messages that are not always sent.
{} Messages encrypted using the negotiated parameters.

Figure 2.3: TLS 1.0 handshake

handshake, but is an independent TLS protocol type. According to the specification, this is
“to help avoid pipeline stalls” [26].

When the server receives the messages from the client, it can also compute the session key.
It then sends a ChangeCipherSpec to indicate that it will also start using encryption, and
also ends with an encrypted Finished. After this point, the handshake is complete, and both
client and server can start to exchange application data.

The handshake consists of quite some messages that must be sent back and forth between client
and server and some expensive cryptographic operations, which introduces communication
overhead. Since no application data can be transmitted before the handshake is complete, this
results in a delay when setting up a connection. To mitigate this delay, the TLS handshake
protocol also includes a session resumption mechanism, where the security parameters of
a previous session are reused. When the client wants the resume a session, it can include
the session ID of the previous session in the ClientHello. If the server agrees to resume
the session, it immediately sends a ServerHello with the same session ID, followed by
ChangeCipherSepec and Finished. The client also responds with ChangeCipherSpec and
Finished, and the handshake is complete. Session resumption requires that both client and
server keep track of past sessions and their parameters.

In the TLS 1.0 handshake, it is also possible to renegotiate the security parameters after the
first handshake. At any time, both client and server can request renegotiation. The client
can do this by sending a ClientHello, which will trigger the handshake. The server can send
a HelloRequest, to notify the client that it should begin the negotiation process anew by
sending a ClientHello [26]. As mentioned before, this renegotiation has been a source of
vulnerabilities and is removed in TLS 1.3.

2.1.3.2 TLS 1.3 handshake

In TLS version 1.3, the handshake protocol has received a major update for the first time.
The normal flow of this new handshake sequence is shown in Figure 2.4. The handshake has
been significantly restructured and the standard now defines three separate logical phases (as
indicated in Figure 2.4): key exchange, server parameters and authentication. The number of
optional messages has increased, but superfluous messages (such as ChangeCipherSpec and

ServerHelloDone) have been removed [25].

client

server

Key Exchange

)

ClientHello
+ key_share*

+ signature_algorithms*
+ psk_key_exchange_modes*

key*

ServerHello

1
1
1
1
|
L+ pre_shared_|
:
1
1
1
1
1

+ key_share*
+ pre_shared_key*

<
<

Server Parameters)

{EncryptedExtensions}
{CertificateRequest*}

<
<

Authentication

)

{Finished}

|
1
1
1
1
1
<
e

{Certificate*}
{CertificateVerify*}

[Application Data*]

i {Certificate*}

1 {Finished}
L

1 {CertificateVerify*}

Y

:4 [Application Data]

€
|

client

L4

server

Legend

Symbol

Meaning

Noteworthy extensions sent in the previously noted message

Optional or situation-dependent messages/extensions that

are not always sent

Messages protected using keys derived from
a[sender]_handshake_traffic_secret

Messages protected using keys derived from
[sender]_application_traffic_secret_N

The TLS 1.3 handshake starts the same as before: with the client sending a ClientHello
specifying supported cipher suites and extensions. In the earlier version of the handshake, the
client would wait with generating its own key share until the server specified which parameters

Figure 2.4: TLS 1.3 handshake

to use. In this version however, the client can provide a list of key shares (one share for every
key type supported by the client) directly after the ClientHello and the server can then
select which one to use. If the client does not provide a list of key shares, the server will
send a HelloRetryRequest, which specifies which key share the client should include, and
the client should send a ClientHello again. After receiving the initial information from the
client, the server responds with a ServerHello and its own key share, and the key exchange
phase is complete. At this point, both client and server know both key shares, and they can
compute the handshake traffic secret, which will be used to encrypt all following messages.

After the key exchange, the server sends its parameters to the client in the form of an
extension list and whether it requests a client certificate. The server then sends its certificate
if required. Unlike the TLS 1.0 handshake, these messages are encrypted, providing additional
confidentiality.

At this point the server part of the handshake is already done, and the server notifies the
client of this by sending a Finished (this is why the ServerHelloDone is no longer necessary).
The server can then also compute the application traffic secret, and can already start sending
application data.

After receiving all information of the server, the only thing the client has to do is send its
certificate (if requested) and end with a Finished. The client can now also compute the
application traffic secret and the handshake is complete.

TLS 1.3 defines a number of extensions to modify this handshake, including the so-called zero
round-trip time (0-RTT) mode. This mode allows the client to include application data in its
first message, at the cost of certain security properties. For more details on this extension and
other, the reader is referred to RFC 8446 [25].

10

2.2 State machines

For the analysis and identification of the TLS implementations, we apply formal methodologies
using state machines. In Section 2.2.1 we provide a definition for a Mealy Machine, the type
of state machine we use to model the TLS implementations. A short introduction to model
learning and the state identification problem are given in Section 2.2.2 and Section 2.2.3
respectively.

2.2.1 Mealy Machine

A Mealy machines is a finite-state machine (FSM), which produces its outputs based on the
state transitions after receiving inputs [21]. A formal definition for a Mealy machine, quoted
from [39], is:

“A (deterministic) Mealy machine is a tuple M = (I,0,Q, qo,0,\), where I is a
finite set of inputs, O is a finite set of outputs, Q is a finite set of states, qg € Q
1s the initial state, 6 : Q X I — @Q is a transition function, and A : Q x I — O is
an output function.”

“Qutput function X is extended to sequences of inputs by defining, for all q € Q,
i€1, and o € I*, Mg, €) =€, and Xq,io) = Xq,i)A\(6(q,7),0). The behavior of
Mealy machine M is defined by function Apq : T* — O* with Ap(0) = Mqo, o), for
o € I*. Mealy machines M and N are equivalent, denoted M ~ N, iff Apy = Anr.
Sequence o € I* distinguishes M and N if and only if Apm(0) # An(0).”

alA b/B

b/B b/B
N N
oo Cc

a/A a/C
Figure 2.5: A simple Mealy machine

In Figure 2.5 a simple example of a Mealy machine (taken from [39]) is shown. This machine
has input symbols I = {a, b}, output symbols O = {4, B, C}, states Q@ = {qo,q1, g2} and the
initial state is ¢g. In the diagram, the states are shown as nodes and the transitions as edges
between them. The edges are annotated with input/output, to indicate which input causes the
transition and what the resulting output is. As an example, when the machine in Figure 2.5 is
in the initial state gg, supplying input message b will cause a transition to state 6(go,b) = 1
and give output A(qo,b) = B.

2.2.2 Model learning

In this section we will provide an overview of the field of Model Learning. This overview is
largely based on [39], and we refer the reader there for a more thorough review.

Model learning is a formal methodology for analyzing stateful systems. It is also known as
state machine inference [10], active automata learning [17] and protocol state fuzzing [29].
The goal of model learning is to “construct black-box state diagram models of software and
hardware systems by providing inputs and observing outputs” [39]. Model learning is a vast
field of research in itself, and many types of models can be inferred, such as hidden Markov
models, class diagrams and state machines [39]. In this thesis, we will infer Mealy machines
from the TLS server implementations we analyze.

11

There are multiple algorithms available for model learning, but the most efficient all follow
the framework of a minimally adequate teacher (MAT) [13]. This framework, published by
Angluin in 1987 [3], views the learning process as a game between a learner and a teacher
[13]. The teacher has full knowledge of a given state diagram M, which in our case is a
Mealy machine representing the behavior of a TLS server. The learner must then infer the
behavior of this state machine by sending membership and equivalence queries. These queries
are described in [39] as follows:

o “With a membership query (MQ), the learner asks what the output is in response to an
input sequence o € I*. The teacher answers with output sequence Apq(o)”

o “With an equivalence query (EQ), the learner asks if a hypothesized Mealy machine
H with inputs I and outputs O is correct, that is, whether H and M are equivalent.
The teacher answers yes if this is the case. Otherwise she answers no and supplies a
counterexample o € I* that distinguishes H and M.”

Using Angluin’s L* algorithm [3], the learner can then incrementally construct the state
diagram by repeatedly sending these membership and equivalence queries to the teacher [39].
As we only use the L* algorithm as a tool in this work, we refer the reader to [39] for more
details.

2.2.3 State identification

State machines are used to model systems in a wide array of fields, and there is an entire field
of research focused on analyzing them and verifying their correctness. One of the fundamental
problems in this field is that of state identification: given a finite state machine M that is
fully known — except for its initial state — identify the unknown initial state go (note that this
is not always possible). An input sequence that solves this problem, if it exists, is called a
distinguishing sequence [20, 24].

A distinguishing sequence can be preset (the input sequence is fixed ahead of time) or adaptive
(the input symbols depend on the observed output) [20]. Adaptive distinguishing sequences
(ADS) are more general than preset distinguishing sequences; a machine might have an adaptive
distinguishing sequence, but not a preset one [21]. We will therefore only discuss adaptive
distinguishing sequences. Note that since the inputs for an adaptive distinguishing sequence
depend on the observed outputs, it is technically a decision tree and not a sequence.

There is a well known algorithm for computing adaptive distinguishing sequences for finite
state machines published by Lee & Yannakakis in 1994 [21]. In their paper, they provide
the following definition for an adaptive distinguishing sequence (notation modified to match
Section 2.2.1):

“An adaptive distinguishing sequence is a rooted tree T with exactly n leaves; the
internal nodes are labeled with input symbols, the edges are labeled with output
symbols, and the leaves are labeled with states of the FSM such that: 1) edges
emanating from a common node have distinct output symbols, and 2) for every leaf
of T, if x,y are the input and output strings respectively formed by the node and
edge labels on the path from the root to the leaf, and if the leaf is labeled by state q;
of the FSM then y = X(q;, x). The length of the sequence is the depth of the tree.”

Figure 2.6 shows a finite state machine alongside the adaptive distinguishing sequence con-
structed using the algorithm from [21]. The ADS can then be used to solve the state
identification problem for this state machine. To find the initial state, start at the top of the
ADS, which tells you to provide input a to the machine. If the output is 0, go down the left
branch and input another a, if the output 1 then take the right branch instead and input b
next. Repeating this process and moving further down, eventually brings you to a leaf node.
This leaf node then tells you in which state you started.

12

a

| /N
a 52 54
/X

51 53

(a) Finite-state machine (b) Adaptive distinguishing sequence

Figure 2.6: Example of an adaptive distinguishing sequence for a finite-state machine [21]

13

Chapter 3

Related work

In this section we discuss relevant related work conducted in the fields of model learning,
fingerprinting TLS, and formal fingerprinting.

3.1 Model learning

Model learning has been applied to various security protocols in order to find vulnerabilities
and standards violations, including OpenVPN [10], SSH [13] and also TLS [28, 29]. The results
of these studies include finding standard violations in three major implementations of the SSH
protocol [13] and multiple vulnerabilities in major implementations of the TLS protocol [28,
29].

One of the things that can be noted from these related works, is that two implementations of
the same protocol (and even two versions of the same implementation) do not necessarily yield
the exact same model when model learning is performed. There can be input sequences that
result in different outputs for different implementation. This is especially likely when inputs
are sent in an unusual order, one that deviates from a standard protocol run. This has been
observed for implementations of different protocols, including TLS. During this thesis, we
collaborated with one of the authors of [29] and built upon their tools in our learning pipeline.
This is described in more detail in Section 6.2.

The fact that different implementations can exhibit different behavior when supplied with the
same inputs is a key property exploited in this thesis. It implies that the learned model of
an implementation can serve as a fingerprint. If two implementations have a different model,
we could therefore provide an input sequence to distinguish these implementations from each
other. Following this reasoning, given a set of implementations for which we have learned the
models, then given a random implementation from this set we could use these distinguishing
input sequences to match the implementation to one of the models, effectively identifying the
implementation.

3.2 Fingerprinting TLS

Since TLS is one of the most widely used security protocols on the Internet, it has been subjected
to a lot of analysis over the years, including different kinds of fingerprinting: traffic analysis,
identification of client and server applications, identification of specific implementations,
etc. The most common, and this is often referred to as simply “fingerprinting TLS,” is the
identification of client (and in lesser extent server) applications by creating a fingerprint of

14

their TLS usage. This is not the kind of fingerprinting we perform here, but we will briefly
discuss it in order to highlight the differences.

3.2.1 Fingerprinting TLS usage of client and server applications

The primary drive behind identifying applications using TLS is to detect malware and malicious
connections in a (trusted) network. These threats make increasing use of TLS to encrypt their
traffic, so deep packet inspection is no longer a viable method to detect them. The approach
therefore emerged to identify these applications based on their usage of TLS, specifically the
contents of the ClientHello. This initial message is not yet encrypted, and its values can be
sufficiently unique to build a fingerprint for a given client application [16, 35].

When a fingerprint is confirmed to belong to an application, it can be stored in a fingerprint
database. For each subsequently observed ClientHello, the fingerprint can then be matched
with this database in order to identify the application that sent it. This method has been
applied successfully to detect (among others) malware, censorship circumvention tools and
web browsers [14, 16, 36]. The most well known tools that implement this method are JA3
and JA3S [36]. The latter extends this method to create a fingerprint of TLS servers based on
the received ClientHello and the resulting ServerHello.

To summarize, this approach focuses on the client and server applications and their behavior,
the desired outcome is to identify a client as “Malware version X,” or “Web browser version
Y.” The specific underlying TLS implementation used isn’t relevant here.

3.2.2 Fingerprinting TLS server implementations

In contrast to the previous approach to fingerprinting, our focus is figuring out which specific
implementation is used to provide the TLS connection (e.g. OpenSSL 1.0.1, or mbed TLS
1.14.3). It is not our goal to identify the higher level applications themselves.

When it comes to identifying protocol implementations, the common approach is sending
input sequences and observing the outputs [32]. For the TLS protocol there is t1s_prober
[37], which also aims to identify TLS server implementations based on a fingerprint of their
behavior. tls_prober defines a list of about 295 different hand-picked test sequences, which
are chosen as “likely to find edge cases in the implementations” [37]. A fingerprint is created
by sending all sequences to the target server and storing the results. Identification has a
“thorough” and a “quick” option. The thorough option sends all 295 test sequences to the
target, the quick option sends less but is also less accurate according to the creators. The
output is a list of possible implementations, sorted by the percentage of matching probes.

tls_prober makes use of hand-picked sequences to find differences between implementations,
we take a more generalized approach. We will first apply model learning to map all possible
behavior of an implementation, so we can then compute which input sequences yield the most
distinguishing information. As a result we sent fewer inputs, but our identification will be a
“yes or no” as it either matches one of the models we learned, or it doesn’t. A partial match
might be possible as a subject of future work.

In our current implementation, we only look at the message types and their order. tls_prober
also does this, but in addition it also looks at how the messages are structured in the TLS
record layer. This is something that could be applied to our implementation in future work.

3.3 Formal fingerprint matching
In the Section 3.1 we mentioned that the learned model of an implementation can serve as a

fingerprint, and that certain input sequences might be used to perform fingerprint matching.
The use of output differences to identify different implementations of the same protocol is not

15

new and has been applied successfully to other protocols. The most well known example is
Nmap, a tool that can distinguishing between thousands of different operating systems using
TCP/IP input sequences [9].

The shortcoming of existing methods is that these sequences are usually not automatically
inferred but manually selected, which requires expert knowledge of both the protocol and the
implementations. This is also the case for t1s_prober, as mentioned in Section 3.2. In order
to distinguish between more implementations and to find the shortest possible sequences to
do so, it can be beneficial to leverage formal methods.

A formal methodology for network protocol fingerprinting is discussed in [32]. In this paper
the authors' present an extension to the FSM model to better model communication protocols,
called the Parameterized Extended Finite-State Machine (PEFSM). The PEFSM model
extends the FSM model in a number of ways: including variables as part of the state, adding
conditions and actions to transitions, and adding parameterized input and output symbols.
The resulting model has much more descriptive power, but it also requires that a specification
is available in order to perform fingerprint discovery.

Using the PEFSM model, the authors present a taxonomy of fingerprinting problems for both
passive and active experiments [32]. For completeness, this taxonomy is shown in Table 3.1.

Table 3.1: Taxonomy of network fingerprinting problems [32]

Active experiment Passive experiment
Fingerprint matching PEFSM conformance testing PEFSM passive testing
Fingerprint group Online machine enumeration Concurrent passive
matching testing
Fingerprint discovery Machine enumeration and Back-tracking based
with spec separation passive testing
Fingerprint discovery FSM supervised learning No efficient solution

without spec

In this taxonomy, our use case can be classified as an active experiment, specifically “fingerprint
group matching” (matching an implementation with multiple fingerprint simultaneously) and
“fingerprint discovery without spec” (as we will apply black-box testing). Unfortunately, the
authors of [32] already noted that “it s, in general, impossible to recover model constructs in
PEFSM related to protocol design (i.e., predicates and actions) from black box implementation.”
They conclude that in the black-box scenario “FSM supervised learning” [33] is the best known
approach, which is another name for model learning which we covered in Section 2.2.2. Since
the algorithm presented for fingerprint group matching is specific to the PEFSM model, it
cannot be directly applied here. We will discuss alternatives in Chapter 7.

Other related work focuses on applying a range of formal methods to improve performance of
an existing fingerprinting approach. A popular subject is OS fingerprinting and identification,
often with Nmap referenced as a baseline. In [15], the authors evaluate the “information gain”
of each Nmap probe in order reduce the number of packets required for an identification, while
maintaining the same accuracy. Another approach is presented by the authors of Hershel,
a tool for single-packet OS fingerprinting [31], who note that the large number of packets
required by Nmap is problematic for Internet-wide use. Their alternative approach uses only
one TCP SYN packet to extract the input for its classification, at the cost of being less specific.

Since fingerprinting can be done with malicious intent, there is also work performed to counter
these techniques. Two examples are protocol scrubbers, and what is often called the moving

11t’s worth noting that one of the authors of this paper is David Lee, who is also an author of the algorithm
for adaptive distinguishing sequences, which we discuss in Section 2.2.3 and Section 7.3.2.

16

target defense. Protocol scrubbers are software components designed to normalize the network
traffic for a given protocol by removing superfluous values and reducing ambiguities, reducing
the ability to identify the target [41]. The moving target defense aims to present an outside
observer with an inaccurate view of the system in order to confuse potential attackers [22,
43]; in this context “system” can refer to a single application as well as an entire network.
Presenting this different view can be achieved in multiple ways such as modifying packet
headers to mimic other implementations [2], or continuously change IP addresses and routes
[8, 19]. In this thesis we focus on developing our fingerprinting and identification techniques
in an unobstructed setting, and consider evasion techniques to be out of scope.

17

Chapter 4

Solution overview

In the previous chapters, we have covered the preliminaries and the related previous work.
In the rest of this thesis, we will describe the design and implementation of our solution for
automated fingerprint extraction and identification of TLS server implementations in detail.
This chapter will provide an overview of the entire solution architecture and some general
implementation details. The following chapters will focus on the individual components.

4.1 Target protocol versions

As discussed in Section 2.1, there are currently four versions of the TLS protocol available.
The most recent version, TLS 1.3, has modified the handshake sequence extensively. Because
this new handshake is not compatible with earlier versions, research and tools tailored to TLS
1.2 and earlier cannot be used without modification. Since TLS 1.3 is relatively new, the
number of implementations supporting it is small in comparison to all versions supporting
TLS 1.2 and earlier. Our focus is on providing a proof of concept for fingerprinting and
identifying TLS implementations leveraging existing formal methods, not analyzing the TLS
1.3 implementations in detail. Therefore we will not include TLS 1.3 in our learning setup,
but only look at TLS versions 1.0, 1.1, and 1.2. We expect that, with updated tooling, our
approach will also be applicable to TLS 1.3.

4.2 Architecture

We split up the process of automated fingerprint extraction and identification in multiple
stages, which will be described in more detail in the following chapters:

o Build (Chapter 5): In order to analyze the TLS server implementations, they must first
be compiled, packaged, and stored for later use. We set up an automated pipeline to
build all versions of the target TLS implementations and publish the build artifacts to a
public location.

o Learn (Chapter 6): After building the TLS server implementations, models can be
learned, for which we set up a second pipeline. This pipeline uses the available build
artifacts published by the build stage, learns a model for all TLS versions supported
by each implementation, and also publishes these models to a public location. These
models serve as fingerprints of the TLS implementations.

o Identify (Chapter 7): When all models are learned, they can be used to identify a
TLS implementation by matching it with its fingerprint. We approached fingerprint
matching as a state identification problem and applied two methods for computing
distinguishing sequences: adaptive distinguishing graph (ADG) and heuristic decision

18

tree (HDT). The ADG is a direct generalization of Lee & Yannakakis’ algorithm for
adaptive distinguishing sequences and the HDT is a new method we present here. A

Python package with the name tlsprint was developed to perform the identification
with either method.

We designed these stages in such a way, that each stage only depends on the output of the
previous stage (visualized in Figure 4.1), which creates a loose coupling between the different
stages. As a result, different stages can be executed and developed independently of each
other, which makes the entire process more flexible.

] Build artifacts Models]
Build p Learn » Identify

Figure 4.1: General flow of stages

To keep our solution modular, we designed an architecture consisting of multiple components,
where each component is responsible for a (part of a) stage. An overview of all components and
their relationships is given in Figure 4.2; the solid arrows indicate a dependency, the dashed
arrows indicate that a component is derived from another component. Each component has
an owner and a name (the format is owner/name), where the tlsprint owner refers to this
project. In the following chapters, the relevant components for each stage will be discussed
separately.

itlsprint/statelearner Itlsprint/tlsprint Itlsprint/TLSAttackerConnector
T T
I |
| I
| |
v \'%

ijderuiter/statelearner itlsprint/models zjderuiter/TLSAttackerConnector

z tlsprint/tls-docker-images i RUB-NDS/TLS-Attacker

N

i tlsprint/docker-openssl i tlsprint/docker-mbedtls

~ s
~ s
N s
N s
~ s
Ny yis

iopenssl/openssl itlsprint/implementation—template iARMmbed/mbedtls

Figure 4.2: Overview of all components

The different components, just like the stages, are set up in loosely coupled way, with no
dependencies on the internals of other components. Two components performing the same task
can be therefore be used interchangeably, as long as they both have the same interface. We
use this mechanism in the build stage to supply implementation specific build configuration, in
the learn stage to create an implementation independent learning pipeline, and in the identify
stage to allow two different methods for fingerprint matching.

19

4.3 Implementation details

In this section, we mention some concrete tools and technologies we have used across all stages.
This is primarily relevant for those we want to gain a better of the understanding of the
internals of the solution.

The components shown in Figure 4.2 are managed with Git! repositories, where each component
is stored in a separate repository. All repositories are hosted publicly on GitHub? where the
name corresponds directly with the GitHub namespace. Most of the t1sprint repositories are
also hosted on a private GitLab? instance. The dependencies between the different repositories
are handled using Git submodules.

The build artifacts from the build stage are Docker? images. Docker is a container technology,
a type of OS-level vitalization, which can be seen as a light-weight virtual machine. Docker
allows software, along with its dependencies and configuration files, to be packaged in a Docker
image. These images can then be executed on any machine with Docker installed. To make
the Docker images publicly available, we upload them to Docker Hub®, a repository where
public Docker images can be distributed freely.

For the tools and scripts we developed, we used Python®, a flexible high-level general purpose
language. For various tasks in our pipelines we created template files to automatically generate
other files. These templates make use of Jinja”, a widely used templating language for Python.

Lhttps://git-scm.com/
2https://github.com/
Shttps://about.gitlab.com/
4https:/ /www.docker.com/
Shttps://hub.docker.com/
Shttps://www.python.org/
"https://jinja.palletsprojects.com/

20

https://git-scm.com/
https://github.com/
https://about.gitlab.com/
https://www.docker.com/
https://hub.docker.com/
https://www.python.org/
https://jinja.palletsprojects.com/

Chapter 5

Building the implementations

Before any model learning can take place, the target implementations must be build, configured
and tested. This the build stage from Section 4.2. Given the large number of implementations
we are dealing with, setting this up is a time-consuming process. These steps were also required
in previous TLS research, but it turns out that the wheel is largely reinvented each time: the
specific pitfalls of compiling old and unsupported software are usually not part of the research
results, the scripts that are used are often specific to the machine of the researcher, and the
build artifacts (the compiled and packaged binaries) are not published.

As a first step in automating the fingerprint procedure, we set up the necessary infrastructure
to continuously build as many TLS implementation versions as possible in a clear, portable,
and automated manner. The build artifacts are published to a public registry and newly
released versions of implementations are automatically included in this process. While these
build artifacts are primarily made for the purpose of fingerprint extraction within this project,
future research can also directly use the artifacts, and not be bothered by the plumbing work
that is required to compile the software.

When building this many implementations and testing if they all function as expected, it
quickly becomes hard to keep track of what is happening. To solve this, we designed a pipeline
with the following properties:

e Perform every build in an isolated environment. This is to improve portability and
prevent the “works on my machine” problem.

e Provide a clear overview of the status of every build: was the build successful or did it
fail? What was the output generated during compiling and verification? Multiple stages
(build, verify, publish) should be easily distinguishable.

e Process multiple versions in parallel to speed up the process.

o Failure processing one version, should not halt the entire pipeline. These failures must be
clearly marked for troubleshooting at a later point, but all versions should be processed.

e Results should be cached to speed up subsequent pipeline runs, as there is no need to
recompile a working implementation. It must also be possible to force a recompilation
by removing the cache.

e It should be easy to add a new TLS implementation to the pipeline.

A schematic overview of this pipeline is shown in Figure 5.1. Because some desired properties

overlap with those of continuous integration and delivery (CI/CD) tools used in software
development, we used a CI/CD platform as the basis for the pipeline. We evaluated multiple

21

(" Pipeline for version x h
())o@
| J
(" Pipeline for version y)
——>
. D
| J
(" Pipeline for version ...)
| J

Figure 5.1: Pipeline design

of these tools in order to determine which one fitted best: Travis CI', Circle CI?, Jenkins?,
GitLab?*, and Drone®. Eventually we went for a combination of GitLab and Drone. Both are
very flexible, but Drone was the only one offering truly parallel builds with multiple stages
each. GitLab was also used for source control management, which provides a convenient
integration, and provides betters support for scheduled builds compared to Drone.

In the realized build stage, multiple components from Figure 4.2 are involved, those are shown
again in Figure 5.2. In the following sections we will explain the role of each component in
more detail.

z tlsprint/tls-docker-images

N

i tlsprint/docker-openssl ‘ i tlsprint/docker-mbedtls

~ -
~ -
~ -
~ -
~ e
Y L

iopenssl/openssl ‘ itlsprint/implementation—template iARMmbed/mbedtls

Figure 5.2: Components used for the build stage

5.1 Build manager

For each implementation we analyze, there are two components: the upstream code of the
implementation developer, and our own build component. For each build component we set up
a dedicated pipeline using Drone as designed in Figure 5.1 (we shall describe this in more detail
in Section 5.2). These builds components are managed by the tlsprint/tls-docker-images
component, which we call the build manager. The build manager configures the pipeline for

Thttps://travis-ci.com/

2https://circleci.com/

3https://jenkins.io/

4https://about.gitlab.com /product /continuous-integration/
Shttps://drone.io/

22

https://travis-ci.com/
https://circleci.com/
https://jenkins.io/
https://about.gitlab.com/product/continuous-integration/
https://drone.io/

these implementation specific build components, in order to maintain consistency across the
different implementations. Specific build settings (compiler flags, etc) are implementation
specific, and are delegated to the individual build components themselves.

5.1.1 Overview

Setting up pipelines to build, verify and publish many TLS server implementations is useful,
but if it is a one-off event, it will quickly be outdated as new versions of TLS implementations
are released. The build manager therefore ensures that the pipeline configuration of each
build component always includes the latest versions, by performing a daily update. For each
TLS implementation, this daily update queries the upstream component for new versions and
triggers the build pipeline with the updated configuration. This pipeline will then publish the
build artifacts of these new versions in the form of Docker images. This process is shown in
Figure 5.3.

—— _
Trigger
‘ 9% 5(Build pipeline]

OpenSSL builder

Trigger Publish

Docker imageJ3

~ -
-

Docker Hub

E4

Build pipeline

=~ Update - “Publish

-

ﬁ _______________ DOCker Imageg

Figure 5.3: Overview of the periodic build

Because each build component is running its own pipeline independently of the others, they
are displayed separately in the Drone dashboard. This results in an overview of the general
build status of the individual implementations, as seen in the screenshot in Figure 5.4.

@ tisprint/docker-openssl

’;" erwin pushed 6ccb1718 to master — Automatic update 2019-... 25:39 - 2 hours ago

€ tisprint/docker-mbedtls

'i:::j- erwin pushed 9c3cbelf to master — Autor

Figure 5.4: Different repositories on Drone

5.1.2 Details

The build manager is hosted as a Git repository called tlsprint/tls-docker-images on a
private GitLab instance and mirrored to GitHub®. This repository contains the implementation
specific repositories as submodules (more details in Section 5.2), and an update script written
in Python. Each build component can be imported as a Python module with two hook
functions (extract_versions and get_supported_tls), which are used by the update script.
A GitLab CI pipeline is scheduled to run the update script on a daily basis. For each
implementation specific repository referenced in this manager repository, the update script
performs the following actions:

Shttps://github.com /tlsprint /tls-docker-images

23

https://github.com/tlsprint/tls-docker-images

e Retrieve a list of all release tags. For the implementations we analyzed so far,
information about releases can be retrieved from the upstream Git repository in the
form of tags. As such, these build repositories contain a reference to the upstream code
as a submodule. The update script pulls the most recent version of the master branch
of the upstream, and reads a list of all tags pushed to this repository. In case Git tags
are not available when adding support for a new implementation, this can be replaced
by crawling a release page, parsing the change log, or something else. As long as the
result is a list of tags, the rest of the script can continue.

o Filter tags. Not all tags published by the upstream are suitable for inclusion in the
build and publish pipeline. Examples are pre-releases and releases which cannot be build
because they rely on tooling which is no longer available. These tags are filtered from
the list.

o Extract version numbers. The tags published in Git often include more than just the
version number, which makes them difficult to use in comparisons. For example, mbed
TLS prefixes their tags with mbedtls- or polarssl- (the old name of this library); this
should be removed to get the actual version number. Both this step and the previous
filter step are handled by the build component through the extract_versions handler
function.

¢ Query supported TLS versions for each implementation. Not all implementa-
tions support all versions of the TLS protocol. Each build component therefore exposes
a get_supported_tls function, which will return a list of supported TLS versions based
on the version number of the implementation.

e Generate dockerfiles. For each version of an implementation a separate Dockerfile is
generated, from which the Docker image can be build. This file contains all commands and
configuration required to build and run that version. Because these build steps are specific
to a particular implementation, each build repository has a template Dockerfile. j2,
which the update script uses to generate the dockerfiles for that implementation.

e Generate .drone.yml pipeline configuration. Drone is configured through a file
called .drone.yml. The build manager contains a template file, .drone.yml.j2, which
is used to generate the pipeline configuration of each build repository. A single template
is used to keep the build, verification and publish steps consistent across the different
implementations. This template takes as input the name of the implementation, the
raw tags, the cleaned version numbers, and the supported TLS versions of each im-
plementation version. The resulting pipeline configuration is then given an entry for
each implementation version, including a verification step (in the form of a standard
handshake) for each supported TLS version.

e Push changes to the build repository. If the update script changes any files
(updated submodule, new dockerfiles, changed pipeline configuration), these are collected
in a Git commit, and pushed to the build repository. This push then triggers the Drone
pipeline for this implementation, which will result in new versions being published to
Docker Hub.

After all build repositories are updated, the submodule references in this manager repository
are no longer up to date. As a final step, these updated references are also committed and
pushed back to the build manager.

5.2 Build components

There are two components for every TLS implementation we include in our build pipeline.
The first component, the upstream code from the developer of this implementation, is not

24

under our control, but we rely on it for the build and update process. The second component
is our own build component, specifically configured for a given TLS implementation, which
will be the topic of this section.

5.2.1 Overview

The build component is responsible for building, verifying and publishing build artifacts of
many versions of a given TLS implementation. It is self-contained, in the sense that all the
files and configurations required to build this implementation, are stored in this component;
this includes the pipeline configuration. Any changes to either the build files or the pipeline
configuration will trigger the pipeline to run.

The pipeline configuration, while generated by the build manager as mentioned in Section 5.1,
is specific to the individual build component. The pipeline consists of multiple sub-pipelines
(one for every version of the implementation) that can be executed in parallel. The pipeline is
executed by Drone and follows the design from Figure 5.1. Figure 5.5 shows a segment of the
pipeline dashboard for successful and failed pipelines, expanded on a single version. As can be
seen, all pipeline steps are planned for every version, and errors do not prevent other versions
from running (in Figure 5.5b, version 1.3.4 successfully completes, even though the earlier
1.3.3 fails). The pipeline currently performs the following actions for every implementation
version.

e Clone: In this step the code of this component is fetched by Drone, and the configuration
for this sub-pipeline is loaded.

e Build: The Docker image for the specific version is build. This involves fetching the
correct version of the source code, installing dependencies and invoking the right compiler
commands. The resulting binaries are placed in a second, clean Docker image (using a
multistage Docker build), so the build tools won’t pollute the test environment later.

e SUT: Start the implementation that has just been build (called SUT, short for system
under test) in the background, with the TLS server listening, in preparation of the
verification stage.

e Verify: The implementation is verified by checking if a standard TLS handshake is
possible. Most implementations support multiple versions of the TLS protocol; these
will all be verified separately. This step is necessary as it can happen that the build is
successful, but the SUT cannot complete a normal handshake. This can be caused by
configuration errors, or faults in the implementation itself.

e Publish: If the implementation has been successfully verified, the Docker image will be
uploaded to Docker Hub, to be publicly available.

After every version of the TLS implementation has been processed, the pipeline ends and the
final status is displayed on the Drone dashboard as shown in Figure 5.4.

5.2.2 Details

Each implementation specific build component has a Git repository (t1sprint/docker-openssl’
for OpenSSL, tlsprint/docker-mbedtls® for mbed TLS, etc.) in which all the build and
configuration files are stored. Most of the files in these repositories are generated by the build
manager, using implementation specific templates. These components have a largely identical
directory structure, they contain at least the following files and directories:

e upstream: This directory is a Git submodule referencing the upstream repository,
the source code of the actual implementation. For example, for OpenSSL this points

"https://github.com/tlsprint/docker-openssl
8https://github.com /tlsprint /docker-mbedtls

25

https://github.com/tlsprint/docker-openssl
https://github.com/tlsprint/docker-mbedtls

@ 10419 00:53 @ 130 01:28

@ 1.0.1h 00:51 € 131 01:24

@ 1.04i 00:51 D 132 01:23

@ clone 00:02 @ clone

@ tbuid 00:05 @ buid

@ sut 00:46 @ sut 00:12

@ verity TLS10 00:11 € verity TLS10

@ verify TLS11 00:10 verify TLS11

@ verify TLS12 00:12 verify TLS12

@ npublish 00:10 publish

@ 1.04j 00:53 D 133 01:26

@ 1.0.1k 00:53 @ 134 01:58
(a) Sucessful pipeline (b) Pipeline with failures

Figure 5.5: Pipelines in the Drone dashboard

to https://github.com/openssl/openssl.git and for mbed TLS it points to https:
//github.com/ARMmbed/mbedtls.git.

dockerfiles: For each version of this implementation, this directory contains a
Dockerfile. This Dockerfile can be used to easily build the Docker image for that
specific version by running docker build dockerfiles/$VERSION. Each Dockerfile
is self-contained, which allows the inspection of the specific build steps, and allows
building either a single specific version, or multiple versions simultaneously.

Dockerfile.j2: From this template, all dockerfiles in this repository are generated.
The template takes some values (such as upstream URL, version, tag, etc.), and contains
the logic which results in the eventual Dockerfile. This logic largely includes running
certain commands, or setting different values, based on the target version.

For example, pulling the source code of a specific version:
RUN git clone --branch {{ tag }} --depth 1 {{ url }} .
Or including an extra flag based on the version to build:

{)% if version < "0.9.7" %}

RUN ./config -fPIC no-asm
{% else %}

RUN ./config -fPIC no-asm zlib
{% endif %}

By placing all the logic in this single template file, it creates a single source of truth
about how the TLS implementation should be compiled for different versions.

__init__.py: This file turns the directory into a Python package with the handler
functions described in Section 5.1.2. These handler functions are called by the update
scripts of the build manager and learn manager (Section 6.1).

26

https://github.com/openssl/openssl.git
https://github.com/ARMmbed/mbedtls.git
https://github.com/ARMmbed/mbedtls.git

e .drone.yml: This file defines the configuration for Drone CI, it is generated using the
.drone.yml. j2 template file from the build manager.

To store the artifacts, each build component is linked to a repository on Docker Hub under
the t1sprint namespace: images for OpenSSL are stored at /r/t1lsprint/openssl? and for
mbed TLS at /r/tlsprint/mbedtls'®. Specific versions are marked with image tags, which
makes it easy to download any given version. For example, OpenSSL version 1.1.1c can be
downloaded by running docker pull tlsprint/openssl:1.1.1c.

5.3 Adding a new implementation

To add a new implementation to the build cycle, the necessary components must be created
and added to the build manager. The build manager then includes this implementation in the
periodic update.

5.3.1 Overview

When adding the components for a new TLS implementation, the directory structure as
discussed in Section 5.2.2 is very important. It is however tedious to create it from scratch
every time. To ease this process, we have created a project template from which these
build components can easily be created. The template takes some variables, such as the
implementation name, to create a scaffold project, which includes the necessary boilerplate
and a link with the upstream component. The user can then add additional implementation
specific code and configuration. Once completed, this new component must be linked to
Docker Hub and Drone, and can then be added to the build manager.

5.3.2 Details

The template is stored on GitHub as tlsprint/implementation-template!l. It
leverages Cookiecutter'?, a project template framework. After installing Cook-
iecutter (for installing Cookiecutter we refer the reader to the documentation of
the project'®), a new build component can be added by running cookiecutter
https://github.com/tlsprint/implementation-template and filling in the prompted
values. This will create the necessary files with some stub content, initialize a Git repository,
add the upstream repository as a submodule and create an initial commit of it all. An
example run is shown below:

~> cookiecutter https://github.com/tlsprint/implementation-template

implementation_name [some-tls]: OpenSSL

implementation_slug [openssl]:

upstream_url [https://github.com/openssl/openssl.git]:

Initialized empty Git repository in /home/tlsprint/docker-openssl/.git/
Cloning into '/home/tlsprint/docker-openssl/upstream'...

remote: Enumerating objects: 3, done.

remote: Counting objects: 100% (3/3), done.

remote: Compressing objects: 100% (3/3), done.

remote: Total 337806 (delta 0), reused 1 (delta 0), pack-reused 337803
Receiving objects: 100% (337806/337806), 169.90 MiB | 17.24 MiB/s, done.
Resolving deltas: 100% (231462/231462), done.

9https://hub.docker.com /r/tlsprint/openssl
10https://hub.docker.com /r/tlsprint/mbedtls
Hhttps://github.com/tlsprint /implementation-template
2https://cookiecutter.readthedocs.io/
L3https://cookiecutter.readthedocs.io/en/latest/installation.html

27

https://hub.docker.com/r/tlsprint/openssl
https://hub.docker.com/r/tlsprint/mbedtls
https://github.com/tlsprint/implementation-template
https://cookiecutter.readthedocs.io/
https://cookiecutter.readthedocs.io/en/latest/installation.html

[master (root-commit) 7d5693d] Initialize repository for OpenSSL
4 files changed, 58 insertions(+)

create mode 100644 .gitmodules

create mode 100644 Dockerfile.j2

create mode 100644 __init__.py

create mode 160000 upstream

In this example run, the user wants to add a repository for OpenSSL. The template infers that
openssl is a good short name to use in directories, and guesses that the source can be found
on GitHub where the user and the repository are both called openssl. In this case this is
correct and the default can be accepted, but a different URL can be passed by the user. The
result is an initialized Git repository in a new docker-openssl directory. The user can then
modify the stub files where needed.

5.4 Discussion

The build pipeline is designed and implemented to operate autonomously. The durability of
such a solution depends on the different components and tools, and how they are connected.
It is therefore worthwhile to discuss how future-proof this setup is in terms of required manual
intervention and maintenance, and how the setup can be improved.

5.4.1 New versions

Most of the time, newly released implementation versions can automatically be build and
published by the build pipeline. Sometimes however, the build process is changed by the
upstream maintainers in such a way that human intervention is required. Examples are
changes to dependencies, build commands, compiler flags, project structure, etc. For these
changes, new checks must be added to the Dockerfile.j2 of the matching build component.
It depends on the maintainers of the individual implementation how often this is required, as
some maintainers care more about a stable build interface then others.

5.4.2 Maintenance

For the build pipeline, Docker and Drone are the most important tools. Drone provides two
deployment options: cloud and self-hosted; both are free for open source projects. Unfortu-
nately, we could not use the Drone Cloud for our build pipeline. In particular, we need to
build a Docker image and, at a later stage, start this same Docker image in order to verify a
particular TLS implementation. This means that the Docker image must be stored somewhere,
which is, at the time of writing, not supported by the cloud hosted version of Drone. The
self-hosted version allows this, by binding the Docker process running in Drone to Docker
running on the host system. This does breaks the isolation of individual build pipelines, as
the Docker images will now be persistently stored on the host.

Using the self-hosted version of Drone means that we also have to manage this instance.
Not a lot of maintenance is necessary, except that logs and unused intermediate images are
not removed automatically. Drone keeps track of the logs of all jobs it ever executed, and
stores these in an SQLite database. At some point, this will consume quite some storage.
Unfortunately, Drone does not provide a convenient way to cleanup the database, so this must
be done manually. For more information, check the following GitHub issues:

o https://github.com/drone/drone/issues/1694
o https://github.com/drone/docs/issues/238
o https://github.com/drone/drone-cli/pull /83

28

https://github.com/drone/drone/issues/1694
https://github.com/drone/docs/issues/238
https://github.com/drone/drone-cli/pull/83

A side effect of storing the images on the host, is that this caches intermediate layers when
building the images, which speeds up the build process considerably when building the same
image a second time. This also means that a lot of Docker images and intermediate layers are
stored on the host machine. This will have to be regularly cleaned if storage is limited. During
our tests we used a 200GB partition to store the Docker layers, which filled up from time
to time. We then had to clean this by running docker images prune, but this was only a
temporary solution. Expanding storage could resolve this issue, but it might also be beneficial
to automatically call the prune command periodically.

5.4.3 Future work

A first target for future work is to add more TLS implementations the pipeline. These could
be standalone libraries such as Botan, BoringSSL or LibreSSL, but also programming language
specific implementations such as the crypto/tls package in Go’s standard library. In some
cases, sample applications may not be provided, or sufficient, in which case these should also
be added.

Cases in which the pipeline fail (such as a new version which cannot be processed) are not yet
reported to the maintainer. This means the pipeline cannot be left completely unattended,
because checking for errors should still happen. Ideally, the maintainer of the pipeline will
receive a periodic (daily) overview of which implementations are processed successfully, and
for which errors have occurred.

The build pipeline relies on various tools, technologies, and platforms: Git, GitLab, GitHub,
Docker, Docker Hub, Drone, Python. The assumptions is that these will be available for
the foreseeable future, but this might change. In case of new technologies or disappearing
platforms, the build pipeline might have to be modified to remain relevant.

29

Chapter 6

Automated learning

After all implementation versions have been build, and their artifacts published, model learning
can begin. This is the learn stage from Section 4.2. Just as for the build stage, we set up
a pipeline for this task. This pipeline learns the models of all TLS server implementations
published by the build stage, and stores the results. The setup for the learning pipeline is
similar to the build pipeline: there is a learn manager, parallel sub-pipelines, and a periodic
trigger to make sure models of new implementations are learned. The components involved in
this pipeline are shown in Figure 6.1. In the following sections the role of each component will
be explained in more detail, starting with the learn manager.

i tlsprint/statelearner i tlsprint/TLSAttackerConnector
I I
I I
I I
| |
Y Y
ijderuiter/statelearner itlsprint/models ijderuiter/TLSAttackerConnector

y
i tlsprint/tls-docker-images i RUB-NDS/TLS-Attacker

Figure 6.1: Components used for the learn stage

6.1 Learn manager

The learning pipeline is centered around the tlsprint/models! component, which we call the
learn manager. It is responsible for configuring and running the pipeline on a regular basis,
and storing the learned models.

6.1.1 Overview

The learn manager configures and executes the entire learning pipeline. This is in contrast
to the build manager, which delegates pipeline execution to other components. The reason
for this, is that the learning pipeline is simpler than the pipeline for building; whereas the
build procedure is different for every TLS implementation, the learning setup (described in

Thttps://github.com/tlsprint/models

30

https://github.com/tlsprint/models

Section 6.2) is identical. This is necessary, because we use a black box learning algorithm,
which is implementation agnostic. The different build artifacts therefore all conform to the
same interface, they expose a TLS server, so there are no implementation specific variables or
settings required for learning.

When learning the model of an implementation, a TLS protocol version must be picked.
Instead of focusing only on the most recent version of the TLS protocol supported by an
implementation, we look multiple at TLS versions. In our experiments we noticed that
specifying different TLS versions can lead to different models for the same implementation
version. This results in additional distinguishing information, which can potentially be used
during the identification phase.

A daily update ensures that the models for new TLS implementations will be learned and
stored, in order to stay up-to-date. The update script starts by querying the available
implementation versions published by the build stage, and the TLS versions supported by
each implementation version. Because model learning can be a time consuming process, we
do not want to relearn the models of implementation for which a model is already stored.
Only the configurations (implementation and TLS version combinations) for which a model is
missing will be scheduled for learning. The learning pipeline will then be triggered to initiate
learning the scheduled configurations. This process is visualized in Figure 6.2.

bt

(Query available implementation versions)

v

(Compare versions to stored models J

v

(Schedule versions to learn)

Y

Version x[TLS 1.0/

Version x[TLS 1.1)

Version x| TLS 1.2/

Version y[TLS 1.0/

Version .|, TLS ...}

Start SUT

Start SUT

(Learn model)

(Learn model)

v

v

Store model

Store model

Start SUT

Learn model

Store model

Start SUT

A
Start SUT

Learn model Learn model
Store model Store model

Figure 6.2: Pipeline for learning

6.1.2 Detalils

The Git repository for the learn manager can be found on GitHub?. It contains the config-
uration of the learning pipeline, the update scripts, and a reference to the build manager.
Most importantly, it also stores all the models that are the result of learning the different
implementations.

This component periodically updates and triggers the learning pipeline. This is done through
a GitLab CI pipeline, which is scheduled to run the update script on a daily basis. This

2https://github.com /tlsprint /models

31

https://github.com/tlsprint/models

update scripts performs the following actions:

e Query available TLS implementation versions. The learn manager is linked to
the build manager (using a Git submodule), so it can construct a list of supported TLS
implementations. For every TLS implementation, the update script then queries the
Docker registry for the available image tags, which in our case are the version numbers
of the different implementations as published by the build pipeline.

¢ Query supported TLS versions for each implementation. As the learn manager
is linked to the build manager, it can also call the handler functions in the individual
build components. By using the same get_supported_tls handler as used in the build
setup, the learn manager can query the supported TLS versions for every image available
on the Docker registry.

o List stored models. All learned models are stored in the models directory in the learn
manager. The implementation version and TLS version used to learn each model is
encoded in the path where the model is stored, with the following format:

models/$IMPLEMENTATION/$VERSION/$TLS_VERSION/learnedModel.dot

By reading the contents of the models directory, the update script can create a list of
the configurations (implementation and TLS version combinations) for which a model is
already learned.

e Compare available versions to stored models. The update scripts now knows
which configuration are available, and for which a learned model already exists. Because
we only want to learn new configurations, we subtract the learned configurations from
the available configurations to get the those for which a model is not yet learned.

o Generate .drone.yml pipeline configuration. After determining for which configu-
rations a model should be learned, the Drone configuration file is generated. This file will
be generated based on the .drone.yml. j2 template stored in the learn manager. The
input for this template is a list of combinations of implementation name, version and
TLS version. Based on this, the learning setup as described in Section 6.2 is configured
for every combination.

o Push changes. Any changes made by the update script (updated configuration or
submodule) are collected in a Git commit and pushed to the learn manager. This push
triggers the learning pipeline to be executed on Drone.

6.2 Learning setup

The learning setup consists of multiple components and is responsible for inferring the state
machine of a particular implementation version, using a specific version of the TLS protocol.

6.2.1 Overview

As discussed in Section 2.2.2; we follow Angluin’s MAT framework for model learning. This
framework however, does not map cleanly to an actual black-box learning setup, since we do
not have a teacher who knows the full state machine (this is what we are trying to find after
all). Learning setups therefore often approximate this framework by using a learner, a tester,
a mapper and a system under test (SUT) [39]. Together, these components can conceptually
represent the learner-teacher setup from the MAT framework.

In this representation, the role of the learner remains the same; it uses a learning algorithm
such as as Angluin’s L* to incrementally construct the state machine by sending membership
and equivalence queries. The teacher is modeled through a combination of the tester, the
mapper, and the system under test.

32

For membership queries, the learner sends an input sequence to the SUT through the mapper,
and compares the observed output with the expected output. Equivalence queries are sent to
the tester. These queries cannot be answered directly (since the state machine is unknown),
and are instead approximated with a conformance testing algorithm [20]. The conformance
testing algorithm will attempt to find a counterexample for a given state machine hypothesis,
by sending test queries to the SUT and observing the output; if no counterexample can be
found, the hypothesis of the learner is considered equivalent to the actual state machine.

The system under test can be any given TLS implementation. It has no knowledge of the
test setup, as it will simply expose a TLS server. The SUT does not understand the abstract
messages generated by the tester, and the tester can’t handle the concrete TLS messages
sent by the SUT. The mapper therefore sits between the tester and the SUT and provides a
connection to both. Abstract messages received by the tester are converted to concrete TLS
messages and sent to the system under test, and vice versa. This allows the tester and the
system under test to communicate as if they were talking directly to each other.

SUT
A
'TLS messages
g
Membership queries Mapper
A
’ Test queries
g
Equivalence queries Tester
Learner Teacher

Figure 6.3: Conceptual learning setup

This conceptual learning setup is visualized in Figure 6.3. We run this setup for multiple TLS
implementations in parallel in our learning pipeline, as shown in Figure 6.2. After a model
has been learned, it will be stored in the learn manager for later use. The next section will
provide more details of our learning setup.

6.2.2 Details

In our setup we rely on LearnLib [18], a Java library for learning Mealy Machines. It providing
various learning algorithms, as well as multiple conformance testing algorithms. This means
that in practice, the learner and tester from from Figure 6.3 are contained in a single learner
component. The mapper and the system under test remain the same. The resulting setup is
shown in Figure 6.4.

Learner Abstract messages Mapper TLS messages SUT

StatelLearner |« TLSAttackerConnector |« TLS Server

Figure 6.4: Learning setup in practice

33

The specific components we use in our learning manager are based on those used in [10, 28]:

e Learner: As mentioned, we rely on LearnLib for the learning the models of the
SUTs. We do not invoke LearnLib directly, instead we use a tool called StateLearner?.
StateLearner, among other things, provides a wrapper around LearnLib, handles the
connections with the mapper and outputs the learned model. It also uses its own
conformance testing algorithm, a modified W-method [29], for better efficiency in this

particular learning setup.

o Mapper: For the mapper we use TLSAttackerConnector?, which takes care of the
communication between the learner and the system under test. This mapper uses
TLS-Attacker® to convert the abstract input alphabet into concrete TLS messages and
manage the connection, including TLS state, with the SUT.

e SUT: The system under test is a specific version of a given TLS implementation, one
of the build artifacts from the build stage. It has no knowledge of the test setup, and
simply exposes a TLS server, similar to normal production usage.

The learner and mapper we use in our setup are forks of StateLearner® and TLSAttackerCon-
nector’. We packaged both tools in a Docker image to include them our pipeline, and made
some minor changes to the mapper®.

The learning pipeline is similar to the build pipeline; the different sub-pipeline are executed
independently from each other, and failures do not affect other sub-pipelines. The exact steps
of each sub-pipelines (also shown in Figure 6.5) are:

e Clone: In this step the Git repository of the learn manager is cloned by Drone, and the
configuration for this sub-pipeline is loaded.

o SUT: Start the target implementation in the background, with the TLS server listening,
in preparation of learning.

e Connector: Start the mapper, TLSAttackerConnector, in the background, in prepa-
ration of learning. The TLS version to use is configured here, as the concrete TLS
messages are created by the mapper.

e Learner: Run the learner, StateLearner, to infer the state machine of the TLS imple-
mentation. Prior to learning, an extra check is performed to see if a model for this
configuration is present, and aborts if this is the case. This can happen if the pipeline is
(manually) triggered without regenerating the pipeline configuration. The result from
this stage is the learned model, a state machine in the DOT format, a graph description
language.

e Commit: The learned model will be stored in the learn manager by creating a commit
with this model file and adding it to the tlsprint/models repository. Because this
commit action will occur frequently in this pipeline, we do not want to use push to the
repository directly, as this will result in conflicts. Instead, we use the GitLab API to
create these commits.

3https://github.com/tlsprint /statelearner

4https://github.com/tlsprint/TLS AttackerConnector

Shttps://github.com/RUB-NDS/TLS- Attacker

6https://github.com/jderuiter /statelearner/

"https://github.com/jderuiter/TLS AttackerConnector

8https://github.com/jderuiter/TLSAttackerConnector/compare/74542f7504e5edd2a68ff0bbbeb27edf731a
Odde...tlsprint:9b298f275e0d776e380e7faec1d0ea9ad372ede8

34

https://github.com/tlsprint/statelearner
https://github.com/tlsprint/TLSAttackerConnector
https://github.com/RUB-NDS/TLS-Attacker
https://github.com/jderuiter/statelearner/
https://github.com/jderuiter/TLSAttackerConnector
https://github.com/jderuiter/TLSAttackerConnector/compare/74542f7504e5edd2a68ff0bbbeb27edf731a0dde...tlsprint:9b298f275e0d776e380e7faec1d0ea9ad372ede8
https://github.com/jderuiter/TLSAttackerConnector/compare/74542f7504e5edd2a68ff0bbbeb27edf731a0dde...tlsprint:9b298f275e0d776e380e7faec1d0ea9ad372ede8

mbedtls 2.16.3 TLS10 07:37

clone 00:02
sut 07:35
connector 07:33
learner 07:24

commit 00:06

mbedtls 2.16.3 TLS11 07:36

mbedtls 2.16.3 TLS12 07:36

Figure 6.5: Learning pipeline on Drone

6.3 Learning alphabet

In order to infer models from the TLS server implementations, we need to define a set of
abstract input messages available to the learner, this is the learning alphabet. As discussed
earlier in Chapter 4, we excluded TLS 1.3 from our setup. As such, we only include messages
from the TLS 1.0 handshake in our alphabet. The complete input alphabet, which includes
messages usually send by both client and server for extra test coverage, is displayed in Table 6.1.
Most of these message are directly defined in the TLS 1.0 handshake, and can thus be used
as is. For some messages however, the semantic meaning is also determined by their content.
These include, but are not limited to, ClientKeyExchange, ServerKeyExchange and alerts.
The structure and the possible responses of the exchange messages are dependent on multiple
factors: the cipher suites and key exchange methods supported by the client and the server,
the previous messages sent, etc. Therefore, multiple messages of this type are defined. For the
alerts, we choose to only include the one that is most often used, AlertWarningCloseNotify,
to limit the input alphabet size. This yields the following input alphabet:

Table 6.1: Learning alphabet

Message Description

Alert message of typr close_notify, often used to
indicate that one of the peers will close the connection.

AlertWarningCloseNotify

ApplicationData Message containing application data. In a normal protocol
run this message is sent after the handshake.

Certificate Certificate message, containing either a client or server
certificate.

CertificateRequest Message sent by a server, requesting the certificate of a
client.

ChangeCipherSpec Signals transition in ciphering strategies.

ClientHello Sent by the client to start the connection and notify server
of cababilities.

DHClientKeyExchange A ClientKeyExchange containing Diffie-Hellman

ECDHClientKeyExchange

parameters.
A ClientKeyExchange containing Elliptic Curve
Diffie-Hellman parameters.

RSAClientKeyExchange A ClientKeyExchange containing RSA parameters.

DHEServerKeyExchange A DHEServerKeyExchange containing Diffie-Hellman
parameters.

Finished Used to signal the end of the handshake phase.

ServerHello Server response to a ClientHello, specifing the

capabilities of the server.

35

Message Description

ServerHelloDone Message sent by the server during the handshake phase.

The learning alphabet only covers the input alphabet, not the output alphabet, as we cannot
know ahead of time all possible responses a system under test might return. There is also a
special RESET message, which is only understood by the mapper, and not forwarded to the
SUT. When the mapper receives this message, it will reset it’s connection with the SUT, which
places the SUT in it’s initial state.

6.4 Learning results

The models resulting from learning are deterministic Mealy machines (Section 2.2.1). They are
stored as DOT files, which can be visualized using Graphviz®. Figure 6.6 shows an example,
the state machine of OpenSSL version 0.9.7 with TLS version 1.0. In this example, the number
of edges has been reduced in order for the image to fit the page and be somewhat readable;
the primary purpose of this image is to give an impression of the size and complexity of these
models. All models, independent of the implementation and version, have some structure in
common:

o All models have a single start state, from which all other states can be reached.

o At each state, all input messages are possible and result in an output.

e Most paths eventually end with a ConnectionClosed. Cycles are an exception to this.

e There is at least one sink state, where messages resulting in a ConnectionClosed end
up. This sink state corresponds to a closed connection, so each input results in a
ConnectionClosed again.

Because the build and learning processes are both automated, new models are added continu-
ously. At the time of writing, the pipeline is configured for two implementations, OpenSSL and
mbed TLS, and has learned models for 134 and 114 different versions respectively. Because
a lot of versions support multiple TLS versions, the number of models learned is higher.
Table 6.2 provides an overview of the model count for every implementation and protocol
version.

Table 6.2: Models learned per implementation per TLS version

Name TLS 1.0 TLS1.1 TLS1.2 Total
mbed TLS 114 114 104 332
OpenSSL 134 65 65 264

Not every implementation has a unique model; multiple versions can have an equivalent model.
Table 6.3 shows the number of unique models per TLS version (combining all implementations),
and the average, largest, and smallest size of the models. In this table, model size refers to the
number of states. Table 6.4 shows the amount of unique models per implementation. More
detailed statistics about each model can be found in Appendix A.

Table 6.3: Number of unique models per TLS version

TLS version Unique models Average model size Smallest model Largest model

TLS 1.0 20 9.8 6 14
TLS 1.1 16 9.2 6 14

Yhttp://www.graphviz.org/

36

http://www.graphviz.org/

TLS version Unique models Average model size Smallest model Largest model

TLS 1.2 15 9.4 6 14

Table 6.4: Number of unique models per implementation

Name TLS 1.0 TLS1.1 TLS1.2
mbed TLS 6 6 5
OpenSSL 14 10 10

All learned models are stored at a directory in the learn manager'®. In case the reader would
like to view statistics on the most recent collection of models, the tables above are generated
by our tlsprint tool through the stats subcommand.

6.5 Discussion

In this section we will discuss some limitations and considerations regarding implementation
details and the resulting models.

6.5.1 Implementation details

Similar to the build pipeline, the learning pipeline runs on a self-hosted version of Drone. It
also makes use of Docker, but less extensively than the build pipeline. In the learning pipeline,
Docker is primarily used to start the learning setup in an isolated environment, which could
be replaced by something else, as long as the build artifacts of the different implementations
are available.

During the parallel learning pipeline, multiple commits are pushed to the repository. Sometimes,
even when using the GitLab API, these commits clash and one of them is rejected. While this
is a nuisance, it is not a big problem, as this model will still be included in the pipeline run
the next day.

For some versions of mbed TLS, learning a model consistently fails. For most versions of mbed
TLS, the learning process takes less than 10 minutes, but for versions 1.2.12 to 1.2.18 and
versions 1.3.9 to 1.3.22, the process never terminates by itself. The current solution is a one
hour time-out on all jobs, so they are automatically killed if they take to long. Additionally
version 1.2.0 of mbed TLS always crashes shortly after the learning starts. Although we suspect
non-determinism to be the cause of the never-ending learning, the reasons and solutions for
both problems are unclear, and require further investigating in each case.

The only reason tlsprint/models is linked to tlsprint/tls-docker-images, is because it
was the simplest way to reuse the metadata about which versions of the TLS protocol each
implementation version supports. If possible, an alternative solution is preferable, such as
adding this meta data to the Docker images.

6.5.2 Models

We assume that the learning setup approximates real-life scenarios, in the sense that the
models learned in our lab match the behavior of TLS implementations running in production
environments. However, it is possible that out test lab yields certain models, which could be
different on a different network architecture (e.g. middle boxes, firewalls, different network

10https://github.com/tlsprint /models/tree/master /models

37

https://github.com/tlsprint/models/tree/master/models

AlertWarningCloseNotify / -
ChangeCipherSpec /-
ServerHelloDone / -
Other / ConnectionClosed

ClientHello / SERVER_HELLO|CERTIFICATE|SERVER_HELLO_DONE AlertWarningCloseNotify / ConnectionClosed
ECDHClientKeyExchange / ConnectionClosed

Other / ALERT_FATAL_UNEXPECTED_MESSAGE|ConnectionClosed

2

Keykixchange / - AlertWarningCloseNotify / ConnectionClosed
DHEServerKeyExchange / ALERT_FATAL_ILLEGAL_PAR AMETER|ConnectionClosed
Other / ALERT_FATAL_UNEXPECTED_MESSAGE|ConnectionClosed

AlertWarningCloseNotify / ConnectionClosed
ApplicationData / ConnectionClosed
ChangeCipherSpec / ConnectionClosed
DHEServerKeyExchange / ALERT_FATAL_ILLEGAL_PAR AMETER|ConnectionClosed
Other / ALERT_FATAL_UNEXPECTED_MESSAGE|ConnectionClosed

AlertWarningCloseNotify / ConnectionClosed
ApplicationData / APPLICATION|ConnectionClosed
Other / ALERT_FATAL_UNEXPECTED_MESSAGE|ConnectionClosed

O|CHANGE_CIPHER_SPEC|FINISHED
AlertWarningCloseNotify / ConnectionClosed

N Other / ALERT_FATAL_UNEXPECTED_MESSAGE|ConnectionClosed |
|
DONE) AlertWarningCloseNotify / ConnectionClosed
ChangeCiphgrSpec /- ApplicationData / ConnectionClosed
ChangeCipherSpec / ConnectionClosed Other / CogectionClosed
Finished / ALERT_FATAL_DECRYPT_ERROR|ConnectionClosed
Other / ALERT_FATAL_UNEXPECTED_MESSAGE|ConnectionClosed)

AlertWarningCloseNotify / ConnectionClosed
ApplicationData / ConnectionClosed
a ChangeCipherSpec / ConnectionClosed
ClientHello / ALERT_FATAL_UNEXPECTED_MESSAGE|ConnectionClosed
ChangeCiphérSee /- DHEServerKeyExchange / ALERT_FATAL_ILLEGAL_PAR AMETER|ConnectionClosed
Finished / ALERT_FATAL_DECRYPT_ERROR|ConnectionClosed
a Other / ALERT_FATAL_UNEXPECTED_MESSAGE|ConnectionClosed

AlertWarningCloseNotify / ConnectionClosed
DHEServerKeyExchange / ALERT_FATAL_ILLEGAL_PAR AMETER|ConnectionClosed

ientttello / SERVERNIECFBN IR s ERVER_HELIQMESOREERT_FATAL_UNEXPECTED_MESSAGE|ConncctionClosed

AlertWarningCloseNotify / ConnectionClosed
ECDHClientKeyExchange / ConnectionClosed
Other / ALERT_FATAL_UNEXPECTED_MESSAGE|ConnectionClosed

AlertWarningCloseNotify / ConnectionClosed
/- DHESer / ALERT_FATAL_ILLEGAL_PARAMETER|ConnectionClosed
Other / ALERT_FATAL_UNEXPECTED_MESSAGE|ConnectionClosed

JeCipherSpec /-

Other / ALERT_FATAL_BAD_RECORD_MAC|ConnectionClosed
° Finished / ALERT_FATAL_BAD_RECORD_MAC|ConnectionClosed
Other / ALERT_FATAL_DECRYPTION_FAILED_RESERVED|ConnectionClosed

Figure 6.6: Reduced model for OpenSSL 0.9.7 with TLS 1.0

38

stack / OS, latency). We did not have access to a large collection of TLS implementations
running on a different infrastructure (or else we would have used that directly for our learning),
so we could not verify this.

Compared to the large number of models, one for every implementation and TLS version
combination, the number of unique models is small. This means that many implementations
share the same model, and cannot be distinguished from each other with our current method.
For future work, it would be beneficial to try to increase the number of unique models, by
making them more specific. There are multiple approaches worth exploring:

o Increase the size of the learning alphabet. Include more message types, but also multiple
versions of the same message. For example, include a specific ClientHello for each
combination of supported key types and other algorithms. Care must be taken to
account for different server configurations, as this might influence the results. For
example, administrations might disable certain cipher suites, use a specific certificate
type, or require client side authentication. All of these factors can influence the output
for a given input sequence.

o Instead of only looking at the message type of the responses, also look at their structure
and contents. This can remain high-level, by looking at how the TLS messages are
fragmented in the record layer (for example, is the response to a ClientHello embedded
in a single TLS record layer block, or multiple), or more detailed, by looking at individual
fields.

e Look at timing. This is susceptible to infrastructure, especially when testing in a
local environment, and identifying across the Internet, but might provide additional
distinguishing information.

o Use different fuzzing techniques. In the current learning setup only valid messages are
sent. Additional distinguishing information might be obtained by sending invalid TLS
messages.

39

Chapter 7

Identification

Now that the models of all implementation versions have been learned for multiple versions of
the TLS protocol, the final step is to use these models for identification. This is the identify
stage from Section 4.2. In this stage, we have the same setup as described in Figure 6.4, the
difference here is that we do not know which TLS implementation is used by the SUT. We have
access to all the learned models, and, by sending input messages to the unknown server, we
try match the behavior of the SUT with one of our models. If the SUT is an implementation
for which we have no model, a match will be incorrect or not possible. This setting where we
have a large group of candidate models and can actively send messages to the SUT is called
active group matching [32].

A simple but highly inefficient way to determine which model corresponds with an unknown
implementation, is to perform model learning on the unknown implementation and compare
the result to all known models. Another naive way would be to perform a conformance test for
each model to see which one matches. Both of these methods are resource and time intensive,
which is undesirable when identifying a large number of implementations, or with servers
that are not under your control. To perform the group matching more efficiently (faster and
requiring fewer input messages), we applied two different methods: adaptive distinguishing
graph and heuristic decision tree.

b

The adaptive distinguishing graph (ADG) [7] is a direct generalization of Lee & Yannakakis
algorithm for computing adaptive distinguishing sequences, which we discussed in Section 2.2.3.
It pre-computes a decision tree with fixed inputs, and each model is identified through a
unique input-output sequence. We collaborated with one of the authors of [7] to make their
implementation suitable for our use case. This approach is described in Section 7.3.

In parallel, we developed a new method which we call the heuristic decision tree (HDT). This
approach does not pre-compute any sequences, but instead compares all models simultaneously
during the identification procedure and dynamically chooses which input to send based on
heuristics. We provide more details in Section 7.4.

Before we discuss each method, we first go over the general process of performing the
identification with tlsprint in Section 7.1. In Section 7.2 we introduce examples models that
we will use throughout this chapter.

7.1 General process
The identification stage is different from the previous build and learn stages. The targets for

the building and learning stages are mostly constant: there is a list of TLS implementations,
new implementations are periodically added, and artifacts can be cached. As such they are

40

implemented as a pipeline which runs periodically. Identification is more dynamic: it uses the
learned models to identify a specified target on demand. So instead of a pipeline, this stage is
implemented through our tlsprint tool.

Just like the previous stages, we kept this stage as modular as possible. Regardless of which
method is used to match the behavior of the SUT, the steps for this stage remain largely the
same: remove duplicate models, construct the model tree, and perform the identification.

7.1.1 Removing duplicate models

As mentioned in Section 6.4, multiple TLS implementation versions can share the same model.
In both identification methods we describe in this chapter, a larger number of models results
in longer computation times. Therefore, as an optimization, we first deduplicate these models.
This preprocessing step greatly speeds up both processes, while it doesn’t change the result.

Currently this deduplication is done based on the file contents of the stored DOT models.
This check is both fast, and sufficiently unique; the DOT files which are outputted by the
learning setup are consistent in their naming and formatting, even across multiple runs. This
is because both the learning algorithm and equivalence algorithm used by StateLearner
(LearnLib’s L* and a modified version of the W-Method respectively) are deterministic. The
deduplication is included as part of the tlsprint tool, using the following command:

tlsprint dedup [OPTIONS] MODEL_DIRECTORY OUTPUT_DIRECTORY

This command reads the directory containing the models, and assumes this directory is the
result of the learning stage. As mentioned in Section 6.1.2, this means that the path of the
model contains the implementation name, implementation version and TLS version, in the
following format:

models/$IMPLEMENTATION/$VERSION/$TLS_VERSION/learnedModel.dot

Because learning is done separately for every version of the TLS protocol, the models are also
deduplicated separately for every TLS version. In the resulting output directory, the TLS
versions are therefore the top level directories.

7.1.2 Construct model tree

For both methods there is a processing step before identification can take place: ADG
precomputes distinguishing sequences, HDT performs a normalization on the models. In both
cases, the data structure which is eventually used for for the identification is a tree, and both
have a similar structure. To make these similar trees compatible, we include an additional
step in which we use either tree to construct a model tree. This model tree ensures that
both trees are structured in the same way, and it also contains extra metadata such as the
mapping between the models and the implementations. This model tree is then passed to the
identify command, which can perform the identification regardless of which method is used
for matching the behavior.

The layout of the model tree is the same as the normalized heuristic decision tree, which
will be further described in Section 7.4.1. The model tree is stored as a serialized Python
object, which can be given to the identify command as input. The tree is constructed with
the following command, where the --tree-type option can specify adg or hdt:

tlsprint construct [OPTIONS] DEDUP_DIRECTORY OUTPUT
When to use this command is depending on the method: for the ADG this command is used

after generating the graph, for the HDT it is used during the normalization step.

41

7.1.3 Identification

When the model tree is constructed from either the ADG or the HDT, it can be used to
identify a TLS server implementations. The command for this is:

tlsprint identify [OPTIONS] TARGET

By default this will use the model tree that is supplied with the code, but another can be used
with the -—tree option. This commands starts TLSAttackerConnector with a connection to
the target, and stops after the process is done. The identification is performed by traversing
the model tree based on the specified inputs and received outputs. If a match between a model
and the SUT has been made, the implementations corresponding to that model are returned
as output.

7.2 Running example

Ip/Closed

Iz/Closed

(a) Model A (b) Model B (c) Model C

Figure 7.1: Example models

To explain the different methods, we use an example consisting of three models, for a simple
protocol. This example protocol has two inputs (I4 and Ig) and three outputs (O4, Op,
Closed). The expected protocol flow is: send I4 and receive O4, then send Iz and receive
OBp, then the connection is closed. This protocol is not remotely close to the TLS protocol,
but suffices to explain the principles of our identification algorithms. Below are three different
models of hypothetical implementations, which we shall use as examples.

o Model A (Figure 7.1a) is a strict implementation: it allows the protocol as described,
and any deviation will result in a Closed response, terminating the protocol.

e Model B (Figure 7.1b) is more forgiving. It allows an infinite number of I4 inputs, and
answers them all with O 4, until a I is sent.

o The third model, model C (Figure 7.1c), always returns O4 after the first message,
regardless of the input. It then only excepts and I, returning Closed on 4.

Note, that all models conform to the description of the protocol. This directly demonstrates
the problem with protocol descriptions in prose: it leaves room for ambiguity.

7.3 Distinguishing sequences

In Section 2.2.3, we discussed the concept of distinguishing sequences and how they can solve
the state identification problem. For our problem where we want to match the behavior of a

42

SUT with a set of known models, distinguishing sequences quickly come to mind. We explored
various methods for computing distinguishing sequences on our models, and eventually arrived
at the adaptive distinguishing graph (ADG) [7]. In this section, we will elaborate on how we
arrive at this method by discussing some of the approaches we explored first in Section 7.3.1
and Section 7.3.2. Then in Section 7.3.3 we will introduce the adaptive distinguishing graph,
and in Section 7.3.4 how we describe how we applied this in our project.

7.3.1 Pairwise distinguishing sequences

In the typical setup for the state identification problem, there is a single state machine, and
any of the states can be an initial state. In our case, we have multiple separate state machines
— our models — of which we already know the initial state. Since we want the distinguishing
the models from each other, we specifically want to distinguish the initial states and do not
care about the others. Because when we know in which specific initial state the SUT started,
we know the matching model and therefore the corresponding implementations.

A simple solution would then be to compute the set of all pairwise distinguishing sequences.
That is, given the set of our candidate models as C = {My, ..., My}, we need to compute a
sequence seq € I* for every pair M; and M; such that fouput(M;, seq) # foutput (M, seq) [32].
To identify the SUT, these sequences are sent to the SUT and the list of possible candidates
is refined based on the output. After every sequence, the connection with the SUT must be
reset to place the SUT back in it’s initial state.

Since we deduplicated the models beforehand (Section 7.1.1) we know that the remaining
models are all different and therefore such sequences can be computed. However, regardless of
the actual algorithm used to compute these pairwise distinguishing sequences, the performance
for this approach is quite poor. For k£ models, the set of all pairwise distinguishing sequences
has cardinality O(k?). In the best case, only k sequences have to be sent to the SUT to arrive
at a conclusion, but this is not guaranteed [32]. For only 20 models, this means computing
400 sequences with varying lengths, and testing at least 20 sequences.

7.3.2 Lee & Yannakakis

In the approach for pairwise distinguishing sequences, only two models are compared at a
time. However, there might be a sequence that distinguishing one model from multiple others,
or a sequence that splits the candidate set in two which directly eliminates half the of the
possibilities. So a more efficient approach would be to compute a single distinguishing sequence
on all models simultaneously.

To do this, instead of having the models as separate state machines we combine them in one
large state machine, which then consists of multiple disconnected models. For every model we
also add new edges from each state to the initial state with input RESET and an empty output.
Recall from Section 6.3 that this special message causes the mapper to reset the connection
with the SUT, placing the implementation back in it’s initial state. These extra edges allow
the algorithm computing the sequences to reset the connection if necessary. They ensures that
an adaptive distinguishing sequence exists to identify the SUT, because at the very least all
pairwise distinguishing sequences can be chained with RESETs. This conversion, performed on
the example models, is shown in Figure 7.2.

Given this single state machine, we now want to compute the distinguishing sequences either
for the initial states, or for all the states (after which we only keep the sequences related to
the initial states). To achieve this, we wanted to apply Lee & Yannakakis’ efficient adaptive
distinguish sequence algorithm, which we mentioned in Section 2.2.3. Unfortunately, this was
not possible due to a lack of valid inputs, to further elaborate this we will first provide a
high-level overview of the algorithm Lee & Yannakakis published.

43

model A

Iz /Closed

Ip/Closed

model B

I/Closed

Ig/Closed

model C'

I5/04

Ip/0p

(2 ST is/ctonea

(a) Separate state machines

Combined models

I /Closed

Ig/Closed

RESET/

RESET

I5/Closed

(b) Combined state machines

Figure 7.2: Conversion from separate to combined models

44

The adaptive distinguishing sequence algorithm starts by initializing a partition 7= with a
single block containing all states. For the example state machine from Section 2.2.3 (shown
again in Figure 7.3 for convenience), we have m = {{s1, s2, s3, 84, 85, S6 } }. The next step is to
partition this further by finding inputs that are valid. To determine if an input a is valid for a
partition block, [21] provides the following:

“To check whether an input a is valid for a block B;, we first partition the states of
B; according to their output symbol on input a, ie., the function A(-,a), and then
we further partition each subset according to the function 6(-,a) (the next state).
This partitions B; into a family of subsets where two states are in the same subset
if on input a they produce the same output and mowve to the same next state. If
one of the subsets contains two or more elements, then a is not valid for B;. If
every subset contains one element then a is valid for B;.”

a

b/0 1\ 0\
b
a

a
1/ \(1)
S1 S3

(a) Finite-state machine (b) Adaptive distinguishing sequence

Figure 7.3: Example of an adaptive distinguishing sequence for a finite-state machine (duplicate
of Section 2.2.3)

Given the initial partition 7 for this example, we evaluate both possible inputs: a and b. For
input symbol a we see that states s1, s3 and s5 output 0 and the others output 1, and the
states that produce the same output all transition to a different state. This makes input a
valid, and it gives us a new partition m; = {{s1, s3, $5}, {$2, 4, 86} }. On the other hand, input
b is not valid here: all states produce the same output, but s;, so and sg all transition to s;.
After this transition, these states can no longer be distinguished from each other, making this
input invalid.

This process of finding valid inputs is repeated for each block of the partition, until the
partition can no longer be refined. If the result is a partition where all blocks are singletons,
then the machine has an adaptive distinguishing sequence.

We now return to our models for which, as we mentioned before, the ADS algorithm can not
find valid inputs. This is caused especially by the sink states present in our models. Many,

45

if not all, states in our models have one or more inputs that lead to the sink state. These
inputs cause the SUT to abort the connection, resulting in error or ConnectionClosed output
in the model. For the sink state, all inputs result in ConnectionClosed and keep the state
machine in the sink state. As such, every input message results in some states becoming
indistinguishable from the sink state, making it invalid. Since there are no invalid input, the
algorithm cannot distinguish any states at all.

This problem can be illustrated with the models from the running example. For the state
machine in Figure 7.2b we have two inputs, 14 and Ig, and start with a partition of single
block B with all states: m = {B}, B = {Ay, 41, As, By, B1, B2, Cy, C1,C>}. First we look at
14 and partition B based on the output, this gives us {{Ao, Bo, B1,Co}, {A1, A2, B2, C1,Ca}}.
When we partition this further based on the next state, the result is {{A4o},{Bo, B1},
{Cv},{A1, A2}, {B2},{C1,C2}}. Since there are subsets with more than one state, input
I, is invalid. The same happens when we apply I, after partitioning based on output and
next state, the result is {{Co}, {41}, {B1},{C1}, {40, A2}, {Bo, B2}, {C2}}. Again, there are
subsets with more than one element, which makes Ig invalid as well.

7.3.3 Adaptive distinguishing graph

Lee & Yannakakis’ algorithm has several limitations which prevent us from applying it to
our models. This lead us to the adaptive distinguishing graph, a direct generalization of Lee
& Yannakakis’ algorithm, published by Van den Bos and Vaandrager [7]. This algorithm is
able to compute distinguishing sequences for our models, and we collaborated with one of the
authors to use their implementation for our project. In this section we will highlight some key
points of the algorithm; we refer the reader to [7] for more details.

The ADG generalizes Lee & Yannakakis’ algorithm in two ways. The first generalization is that
the ADG allows splits that the distinguishing sequence algorithm would consider invalid, and
this is the reason we can apply it our models. When trying to find an adaptive distinguishing
sequence, Lee & Yannakakis’ algorithm constructs a splitting graph where valid inputs split
the state partitions in disjoint sets. The splitting graph created by the ADG algorithm extends
this by allowing transitions that split the state partitions in intersecting sets, as long as these
splits meet other conditions. For the exact details, we refer the reader to [7].

The second generalization is that ADG doesn’t use the finite-state machine framework, but
instead works with a labeled transition system (LTS) [38], a much more general framework
for representing systems. In an FSM, inputs and outputs strictly alternate, and the output
is defined purely by the input and the state. In an LTS, transitions are labeled by either
an input or an output and both can be present at any point. Among others, an LTS allows
output nondeterminism and states without transitions for all inputs [7], making it capable of
representing more complex systems than an FSM. This second generalization is not directly
relevant for our application, but it means that in order to apply the ADG algorithm to our
models, we have modify their representation. We keep the same approach as before, combining
all the models and adding the RESET edges. Then, to convert them to an LTS, we split all
edges in separate input and output edges. The result for the example models is shown in
Figure 7.4.

When we apply the ADG algorithm on the LTS version of the example models, the result
is an ADG to distinguish all the states from our models. Since we are only interested in
the initial states, we discard everything not related to those from the ADG. The result is
shown in Figure 7.5, formatted in a similar style as the adaptive distinguishing sequence in
Section 2.2.3.

The identification procedure is straightforward, the same as for the ADS: start at the top,
send the specified input and move down depending on the output until a leaf node is reached.
This leaf node then indicates the model that matches the observed behavior. It is important

46

RESET

Figure 7.4: Example models converted to a labeled transition system

Ip
y %ed
Co RESET
Iy
04 l
I
C’loy g
A[) B(]

Figure 7.5: Adaptive distinguishing graph of the example models

47

to note that if this approach is used to match an implementation for which a model is not yet
learned, the results will be unpredictable. The implementation might yield an output that is
not present in the ADG which will rightfully prevent a match, but if the behavior is similar
enough to any of the known models it will result in a false match.

7.3.4 Integrating ADG

To incorporate the Haskell implementation from [7] in our project, we collaborated with one
of the authors to extend their implementation for our use case. Specifically, the result of
our collaboration was a command-line tool called adg-finder. adg-finder takes the learned
models as input files, computes the ADG for the combined models, discards everything not
related to the initial states, and outputs the result as a DOT file. From this DOT file we
can then create the model tree as discussed in Section 7.1.2, which can then be used for
the identification. The model tree version of the ADG for the example models is shown in
Figure 7.6. We packaged this tool as a Docker image', so it can fit in the rest of our pipeline.

Figure 7.6: Model tree of the adaptive distinguishing graph for the example models

The input files for adg-finder should be provided as JSON files. Converting our (deduplicated)
models to this JSON structure can be done with tlsprint using the following command:

tlsprint convert [OPTIONS] INPUT QUTPUT

This conversion command has two options: ——add-resets and ——name. The first option adds
the reset edges the initial state. The second options specifies the name for this model which is
then prefixed to every node, this is the part that converts state 0 of model A, to state Ag in
the combined model.

To summarize, the complete process for going from the learned models to identification is as
follows:

o Deduplicate the models (t1lsprint dedup)

Thttps://hub.docker.com/r/tlsprint /adg-finder

48

https://hub.docker.com/r/tlsprint/adg-finder

o Converted deduplicated models from DOT to JSON (tlsprint convert).

o Compute the ADG from the JSON files (adg-finder). For our combined models this
takes around 10 to 15 minutes on our build server.

o Construct the model tree from the ADG (tlsprint construct).

o Use the model tree to identify targets (tlsprint identify).

In the next section we will describe our second approach for identification, the heuristic
decision tree. We will compare the two methods in Section 7.5.

7.4 Heuristic decision tree

The second approach we discuss for identification is the heuristic decision tree (HDT), which
we developed during this project. The idea of this approach is that instead of precomputing
sequences, the SUT is compared to all available models simultaneously during the identification
process. This will allow for a more dynamic and possibly more efficient identification process.
It also provides practical benefits, such as the ability to easily include new models in the
comparison without any expensive precomputation.

During the identification, which input to send to the SUT is determined by looking at all
possible inputs for all models, and choosing one based on certain heuristics (such as largest
possible split in candidate models, or a weight assigned to the input messages). The selected
input is sent to the SUT, and based on the output a state transition is performed in all available
models. The models which have a different output to the given input are removed from the set
of candidates, as they do not match the observed behavior. Based on the remaining models
available, and their current state, a new suitable input message is determined and sent. By
repeating this process, one model will eventually remain (or none, if the implementation does
not match any of the models).

In our implementation we first perform a normalization to more easily compare all models
simultaneously. We do this by converting each model to a tree, which we can then merge
together into a single large tree. This process will be explained in more detail in Section 7.4.1.
During the identification, the normalized tree can be traversed and pruned, as desired, which
will be the topic of Section 7.4.2.

7.4.1 Normalize models

In the heuristic decision tree approach, we want to compare all models simultaneously. To aid
this process, all models are normalized into the same structure before the identification process
begins. We choose to do this by converting a model into a tree, where each branch represents
a possible path through the model, an example is shown in Figure 7.7. Because the models are
mostly directed towards a sink state, these branches usually end with a ConnectionClosed
message.

As can be seen in the example, for each possible path in the model, there is a unique branch
in the tree identified by the inputs and outputs. The inputs and outputs are on a separate
edge, to allow different outputs for a single input when the models are merged together. This
labeling is similar to the labeled transition system used by the adaptive distinguishing graph
from Section 7.3.3. The name of the model will be added to each leaf of the tree as label, to
indicate which paths corresponds to which model when the trees are merged together. The
other nodes in the tree are not labeled, as the only significant information is contained in the
edges.

In constructing the tree, we use the fact that all paths lead to a sink state, and all paths end
with a terminating message (named Closed in the example and ConnectionClosed in the
actual models), to recursively unwrap the model to a tree. The only thing that makes this
more complicated, is the fact that some models contain cycles, so we cannot solely use the

49

Ip/Closed

(a) Original model A (b) Tree for model A

Figure 7.7: Model A with normalized tree result

recursive “stop when a ConnectionClosed is found.” The most simple solution to remedy this,
is to specify a maximum recursion depth for the number of states, which should be the same
for all models being normalized. The value we use for the maximum depth, is the number
of nodes of the largest model, as we assume this would be the maximum depth if no cycles
would be present.

After normalization, the models in tree form can then be merged into a single large tree. If
two models contain the same path, then the leaf of the corresponding branch should contain
both model names as label. Figure 7.8a shows the tree resulting from normalization and
merging the three example models. This tree contains a lot of redundant information. For
example, after input Ig and output O 4, all remaining sequences correspond to model C. The
same goes for the sequence (14,04,14,0p), after which only model B remains. Additionally,
the branches after (14,04, Ip) provide no distinguishing information, as all three example
models have the same behavior. In what we call the condense step, we make this tree smaller
by removing branches with no distinguishing information, and shorten branches as much as
possible. The result is the condensed tree as shown in Figure 7.8. It must be noted that
even though condensing does not remove distinguishing information, it does remove some
information. As a result, unknown implementations with behavior similar to known models
have an increased change of being matched falsely; is also the case with the ADG as noted in
Section 7.3.3. If this is problematic, this step can be skipped to reduce this probability, but it
will yield a (much) larger tree.

After condensing the tree, the normalization step for the heuristic decision tree is finished.
During the identification stage, this tree will be pruned further depending on the output of
the actual system under test, which will be described in more detail in the next section.

The normalization step is provided by the construct command of our tlsprint tool, which
takes the result of the deduplication stage (described in Section 7.1.1) as input. As we discussed
in Section 7.1.2, the output of this step is the model tree, which in this case is the heuristics

50

Oa Closed Oa
O
Ia
Closed Oa
AC B
(a) Full huristic decision tree (b) Condensed heuristic decision tree

Figure 7.8: Heuristic decision tree for example models

decision tree with additional metadata added.

7.4.2 Identification procedure

After the normalization stage, we have a tree with all (distinguishing) paths from all models.
We use this tree to match the behavior of the SUT to one of the available models. When
matched, we can then lookup the list of possible TLS implementation versions that correspond
to this model.

An implementation detail: in the pseucode listings in this section we will refer to nodes in the
heuristic decision tree as the path required to reach them; a tuple of all inputs and outputs.
This is not the label, but an internal node encoding. Figure 7.9 shows the example heuristic
decision tree twice; once with the labels, and once with the node encoding.

The identification procedure for the heuristic decision tree consists of three subroutines. These
are repeated in a loop until one candidate model remains, or behavior is encountered that
doesn’t match any of the models. We call these subroutines descent, prune and condense, and
will describe each in more detail in this section. Pseudo code for the identification procedure
using these subroutines can be seen in Listing 7.1.

e Descent: This recursive procedure starts at the top of the tree, and moves downwards
depending on the chosen inputs and received outputs. At the start of every round, it
looks at the possible inputs; this corresponds to the edges originating from the current
node. Based on heuristics or other rules, an input is selected and sent to the system
under test (more on input selection in Section 7.4.3). When the output is received the
subroutine moves downwards in the tree, following the appropriate edges. It then starts
another round and selects another input. This is repeated until a leaf node is reached.
If at any point the output is not recognized, the identification process stops, as the
result no longer matches any of the models. If a node is reached with only one model in

51

Oa Closed Oa Closed

(I, Closed) (Ip,04)

(I14,04,14)

Closed Oa Closed
AC B (Ia,04,14,Closed) (14,04,14,04)
(a) HDT with labels (b) HDT with node encoding

Figure 7.9: Node encoding example for heuristic decision tree

its label, this model will be returned as the match. Pseudo code for this subroutine is
shown in Listing 7.2.

e Prune: When a leaf node is reached, we know that the observed behavior matches
all models listed in this node. This means all other models can be removed from the
comparison, as their behavior doesn’t match the observation. This is done by removing
the names of these unmatched models from all labels, and removing the nodes which
then no longer have a label.

e Condense: After pruning, some nodes will now have a label consisting of all remaining
candidate models. These nodes no longer provide any distinguishing information, and
can be removed. In the condense step, all nodes and branches with no distinguishing
information are removed. This is the same procedure which is used after the normalization
step described in Section 7.4.1 and shown in Figure 7.8.

After the condense subroutine, the special RESET message is sent. As discussed in Section 6.3,
the mapper doesn’t forward this message to the SUT but instead closes the current connection
with the SUT and starts a new one. This places the SUT back in the initial state, at the root
of the tree, and the descent step can be performed again.

7.4.3 Input selection

The selection of an input message in the descent step is a central part of the identification
procedure for the heuristic decision tree approach; choosing the proper input messages can
results in a faster, and more resource efficient identification. Because the HDT encodes a lot
of information, choosing an input can be done based on different heuristics.

These input selectors can range from simple to complex, and in our implementation these are
customizable. Two very simple input selection rules are “pick a random input,” and a more
deterministic “pick the first input.” These rules are easy to implement and require minimal
computation. They were the initial rules we implemented in our tool, and while such simple

52

Listing 7.1 Psuedocode for identification
tree = The heuristic decision tree

while len(tree.models) > 1
leaf_node = tree.descent()

if not leaf_node:
Return: Unknown behavior encountered

if leaf node.models ==
Return: Version information corresponding to remaining model

tree.prune(tree.models - leaf_node.models)
tree.condense ()
send ("RESET")

Listing 7.2 Psuedocode for the descent subroutine
tree = The heuristic decision tree

current_node = root node
descending = True

while descending:
possible_inputs = edges starting at 'current_node'
input = pick(possible_inputs)
response = send(input)
reponse_node = current_node + (input, output)

if reponse_node not in tree:
Terminate, behavior does not match any model

if response_node in tree.leaves:
descending = False

current_node = response_node

Return: current_node

rules already result in a successful identification, they are not the most efficient in terms of
the number of inputs sent, or required number of RESET messages. After all, some inputs will
always result in the same output, such as starting with a ClientHello, while others provide
more distinguishing information.

For another input selector we took inspiration from the impurity measures used in decision
tree learning [34]. Decision tree learning (not to be confused with our heuristic decision tree)
is a commonly used technique in data mining and machine learning for generating predictive
(classification) models. We adapted the Gini impurity, which is defined as

c—1

Gini(t) =1 _(p(i | 1))”.

=0

In the context of decision tree learning, this p(i|t) is defined as the fraction of records belonging
to class i at a given node ¢, where ¢ is the number of classes. If the impurity is high, it means

53

that there is a relatively uniform distribution, if the impurity is low, the distribution is skewed.

In order to use the Gini impurity for input selection during the descent of the HDT, we
first have to define the variables, and the way we compute p(i | t). Also, when choosing an
input, we want to mazimize the impurity, as this yields the split with the most distinguishing
information.

First, let t be the node for which we want to compute the impurity, which, as discussed in
Section 7.4.2 and shown in Figure 7.9, is encoded as the path required to reach this node.
For the input selection, we always want to compute the impurity for different inputs, so the
path t always ends with an input message. With I and O as the set of inputs and outputs
respectively (as defined in Section 2.2.1), i, € I and o € O, this gives us t = (i1, 01, ..., %n)-

Next, we introduce a weight function node_weight which takes any node as input, and returns
a numeric value. This weight function is flexible, as it can leverage all information stored
in the HDT. For example, node_weight could count the number of models in that subtree,
and return that as the weight. Figure 7.10b shows the weight of each node when this weight
function is applied to the example HDT. Not all models are equal, some describe the behavior
of a single TLS implementation, where others correspond to many. Instead of treating them
the same, another weight function model_weight can assign weights to each model. These
can be based on the number of implementations corresponding to a model, or known usage
statistics about different implementations. Figure 7.10c shows an example with the following
weights for each model: A =5,B=10,C = 1.

I Ig I Ip Ia Ip
s 3O
04 Closed "\ Oa on Closed "\ Oa on Closed "\ Oa
() AB c (ﬁ) 2 1 Cﬁ) 15 1
Ia Ia Ia
3 16
Closed \ Oa Closed \ Oa Closed '\ Oa
ac B 2 1 6 10
(a) Reference HDT (b) Count models (c) Different model weights

Figure 7.10: Different weight functions applied to the example heuristic decision tree

We can then define p(o | t) as a function on the input node ¢ and a possible output edge o € O.
Using the weight function, we define p(o | t) as

weight ((¢,0))

weight (t) (7.1)

plo|t) =

where (¢, 0) is a shorthand for the node (i1, 01,...,4n,0). This can then be used to compute

54

the impurity and perform input selection. An example using the Gini impurity is shown in
the next section.

7.4.4 Example

Given our example models from Section 7.2, we are tasked to match the behavior of a given
SUT with our models. We use the Gini impurity for input selection, and assign each model
the same weight, just as in Figure 7.10b. Suppose the SUT is running an implementation
corresponding to model B.

We start in the descent phase at the root, and need to select an input. At the top of the tree
are two input edges, I4 and Ig, so we compute the Gini impurity for each input message
(visualized in Figure 7.11):

Gini((1a)) =1- Y p(o] (1a))®

ocO
=1-p(0a | (Ix))*

L (weight((IA,OA))>2

weight ((14))

Gini((Ip)) =1- 3 p(o| (In))?

0€0
=1—p(Closed | (IB))2 —p(Os| (IB))Q

L (Weight((IB, C’losed))>2 B (weight(([B, Op))) ’

- weight (7)) weight ((I5))

=6 -6) =

To maximize the distinguishing information, we pick the input with the highest impurity, /5.
We send this message to the SUT, which responds with the output Closed, and we descent
the tree to node (I, Closed) (see Figure 7.12a).

This node is a leaf node. We check which models are listed in this leaf, and prune the others.
This means that model C will be removed from the tree, the result is shown in Figure 7.12b.

In the condense step, all nodes that have both A and B in their label are also removed
(Figure 7.12c). The SUT is then reset, and the descent start at the top of the HDT again. For
this example, no further choices can be made, as only one input is possible at each round. The
descent reaches the node that only has model B in it’s label, and this is returned as the result.

Even tough the example is overly simplistic, it demonstrates the identification algorithm
and the input selection. In Section 7.5, we shall compare the performance of multiple input
selectors when applied to the models learned in Chapter 6, and also compare this to the
performance of the adaptive distinguishing graph from Section 7.3.3.

7.4.5 Future work

Our method for matching the behavior of a SUT with learned models works, but there is
room for improvement. In this section we will discuss some limitations and offer directions for

95

Oa Closed Oa
@ weight: 2 weight: 1
ia
i Closed Oa

b

Figure 7.11: Gini impurities for the input selection of the first descent

I In ; Ia i Ip

0=0-0

Oy Closed Oy Oa Closed
<> o ‘ () o
In Ia I
ﬁ(& Closed [
AC B A B A B

(a) Descent to node (Ig,Closed) (b) HDT after pruning (c) Condensed
model C' HDT and final
descent

Figure 7.12: Identification for example models

56

future work.

7.4.5.1 Normalization

Handling of cycles in models currently uses a simple approach: recursively unwrapping cycles
until a maximum depth. A possible improvement would be to detect a cycle instead of
unwrapping it and add information about this cycle to the tree (e.g. length of the cycles,
involved messages, identifier of the node where the cycle starts and ends). Then after all
models are merged, these cycles are expanded, but only as far as necessary to prevent confusion
with other paths. If models share (part of) a cycle, then this should also be accounted for.
Doing this properly will ensure that all paths are present in the tree (and not truncated before
of the max depth), and the size of the tree is minimal (currently these cycles inflate the size
significantly).

7.4.5.2 Identification

If the algorithm encounters a TLS implementations for which a model is not yet learned,
but the behavior is similar to one of the learned models, then the algorithm might make an
incorrect match. If this is a problem, then the original version of the candidate model (not
the condensed version in the tree) can be used to verify some or all paths afterwards, as this
might find a path that doesn’t match.

7.4.5.3 Input selection

We discussed three input selectors: random, pick the first input, and a selector using the Gini
impurity. The first two are trivial to implement, but they do not perform any optimization.
The selector using the Gini impurity performs better (see the benchmark in Section 7.5.2), but
the current implementation only looks one input ahead, as visualized in Figure 7.11. For the
example shown in Figure 7.10c, only looking one input ahead means that model C is identified
after one input, but both A and B need three. With the different weights for each model,
this means that (15-3 4 1) / 16 = 2.875 input message are sent on average. If the selector
would look further ahead, it would see that choosing I4 as the first input is more efficient,
as the next split has a significantly higher Gini impurity. Starting with I4 would mean only
(10-2+6-3) /16 = 2.375 inputs are sent on average. Optimizing the input selectors is a topic
for future work.

We kept our implementation as modular as possible, many parts can be customized with
relative ease. There is a loose coupling between the input selectors and the different weight
functions, so any input selector can use any weight function. Extending the implementation
with a new input selector or weight function only involves writing a single Python function,
which is then injected in the identification subroutine.

Some input messages are more computationally expensive than others due to cryptographic
operations (ChangeCipherSpec for example). It might be desirable to minimize these opera-
tions, to reduce load on the host system and/or the SUT. This could by done by introducing
an input weight function which is used instead, or in conjunction with, the model weight.

7.5 Comparison

In the previous two sections, we discussed the adaptive distinguishing graph and the heuristic
decision tree in detail. In this section we will compare them and see how they perform through
a benchmark. To recap first, a high level overview of the key differences:

¢ Preparation: The ADG spends most of the computation time up front by computing
the graph, which takes around 10 to 15 minutes on our build server. The HDT only
needs to normalize the models, which does not take a lot of time (less than a minute).

o7

e Tree size: Both methods result in a compatible model tree. The ADG is relatively
small and simple, as it only contains the paths from the distinguishing graph. The size
of the HDT is larger and contains more information, as it has all the paths that provide
some distinguishing information. Table 7.2 shows the number of nodes for each tree.

e Tree structure: The ADG includes the RESET inputs and the following path in the
graph, while the identification for the HDT sends a RESET after reaching a leaf and then
starts again in the top of the tree. This means the ADG is a narrow and deep graph
compared to the HDT, which is very wide and less deep.

o Identification: Since the ADG performed the computation beforehand, the identifica-
tion process is simple: follow the path depending on the provided inputs and the resulting
output. Once a leaf has been reached, the identification is complete. For the HDT, this
phase is where most of the work happens: inputs are determined and depending on the
output a portion of the candidate models are removed from the comparison.

e Customization: The ADG provides a single input each time, and only transitions
depending on the received output. Any changes in the input decisions must be done
while computing the graph during the preparation and the resulting graph is then
unchanged during the remainder of the identification. The HDT is dynamic at its core.
This introduces additional complexity during the identification but also allows different
optimizations when selecting inputs. It’s also possible to change the selection criteria at
any time while performing the identification.

e Including new models: To include a new model in the ADG, the entire graph has
to be recomputed, which will take longer as more models are added. This process is
easier with the HDT, only the normalization has to be performed again. While this will
also take longer as more models are added, the actual computation time will still low
compared to the ADG.

In total we have six different methods that we want to compare: the ADG, and the HDT
with three different selectors (first input, random input and Gini impurity), where the Gini
method will be applied with three different weights functions. To compare the performance of
these methods, we will look at three metrics: number of input messages, number of RESETSs,
and computation time. Both the ADG and the HDT aim to minimize the number of inputs
required for a successful identification, so this will be the primary metric. The number of
RESETs is not part of the optimization, but it is interesting to see how often the connection has
to be reset for either method as this operation is relatively expensive. We want to measure the
computation time required to perform an identification, because the HDT is performing most
of its decisions here, unlike the ADG which has already precomputed the graph. Specifically,
we want to know if the additional time required by the HDT is acceptable, since it will impact
every identification performed. In the rest of this section, we will describe the benchmark
setup (Section 7.5.1) and discuss the results (Section 7.5.2).

7.5.1 Benchmark setup

For the benchmark setup, the initial thought was to use the identification setup as discussed
in the beginning of the chapter; start the mapper, start the SUT with the implementation
on which we want to run the benchmark, send messages, and collect results. However, this
is a very time consuming process, as the overhead — starting the servers for the mapper and
the SUT, network latency, cryptographic operations — is quite significant, especially when
performing a lot of these tests. We therefore opted for a different approach: using the models
directly. Since the models describe the behavior of the implementations, we can also see how
they would respond to a given input message without actually sending it. This resulted in a
benchmark that is much faster, and it also allowed us to better measure the computation time
since it eliminates most of the overhead.

Using the models to respond to inputs is done as follows. The identification functionality in the
tlsprint tool can use different connectors. One is the connector for the mapper and the other

58

is the benchmark connector, both can be provided with input messages and return output
messages. The connector for the mapper takes care of initializing TLSAttackerConnector,
sends the inputs to the mapper and returns the received outputs. The benchmark connector
does not do any of this, it only simulates a given model. When it receives an input, it looks
up which output that model would give, and returns that. Additionally it also keeps track
of certain data, such as which messages were sent and received, which will be used for the
comparison later.

We also want to compare the performance of the methods when using different model weight
functions. As discussed before, not all models correspond to an equal number of implemen-
tations, which might skew the results. For example, one of the identification methods could
perform significantly better or worse on some model that happens to correspond with only
one implementation. Or one of methods has terrible performance for the model of an imple-
mentation that is rarely used; this could then be weighed less compared to more commonly
used implementations. The model weight functions we include are:

e Equal: Treat all the models as equal, assigning a weight of 1 to each model.
e Count: Count the implementations corresponding to a model and use this as the weight.

¢ Recent: Here we include a larger weight to more recent implementations, as these are
suspected to be more likely deployed in practice. This gives older models, which are
generally larger, a low weight in comparison. The weight of the model is then the sum of
the weights of the corresponding implementations. The specific weights we choose are:

— A weight of 20 to OpenSSL version 1.1.1 and later. This is the most recent major
version, first released in September 2018.

— A weight 5 to OpenSSL versions between 1.1.0 and 1.1.1. Version 1.1.0 is the
previous version, first released in August 2016.

— A weight of 20 to mbed TLS 2.16 and up, the most recent long-term support (LTS)
version, first released in December 2018.

— A weight of 5 to mbed TLS versions between 2.7 (the previous LTS version) and
2.16.

— All other versions receive a weight of 1.

These weights are rather arbitrary, but they are sufficient to provide a higher weight to
only some models.

In Table 7.1, we show the different weights for all models learned for TLS version 1.2. The
values for the other TLS versions can be found in Appendix B. These weight functions will
primarily be used to evaluate the performance of the different methods in Section 7.5.2. The
only identification method that uses these weights during the identification is HDT with the
Gini selector.

Table 7.1: Different weight functions applied to models learned for TLS 1.2

Model equal count recent
model-1 1 13 13
model-2 1 13 65
model-3 1 2 2
model-4 1 11 11
model-5 1 1 1
model-6 1 9 9
model-7 1 1 1
model-8 1 8 160
model-9 1 3 3
model-10 1 4 4

59

Model equal count recent

model-11 1 27 27
model-12 1 33 540
model-13 1 24 108
model-14 1 14 14
model-15 1 6 6

We perform the benchmark for all models we have learned for each TLS version. As can be seen
in Table 6.3, we have 51 models in total. Combining this with 6 different identification methods
gives us 306 different benchmarks to perform. To get more accurate timing information (and
message counts for the random method), we perform the benchmark 200 times for each
model and average the results. Performing more iterations doesn’t yield much more accurate
results. The benchmark is part of the tlsprint tool, and can be executed with the command
tlsprint benchmark generate.

The benchmarks are performed on a laptop with an Intel Core i5-3320M CPU with 4 cores
running at 2.60 GHz. This is mainly relevant for the timing information, as the other metrics
are independent of the hardware used. The benchmark is parallelized and can run on all cores
simultaneously. Performing the 306 tests 200 times each takes approximately 30 minutes.

7.5.2 Benchmark results

We start with some statistics about the specific model trees used for this benchmark. The
sizes of the different model trees are shown in Table 7.2. It can be seen that ADG yields a
much smaller tree than the HDT even though it already includes the RESET messages. This is
expected because the HDT includes much more information since the inputs are yet to be
determined. Both methods yield smaller trees for later TLS versions, which can be explained
by the fact that later versions are supported by fewer implementations and thus have fewer
models. Also, more recent implementations have smaller models, as can be seen in Table 6.3
and Appendix A.

Table 7.2: Number of nodes of each model tree

Method TLS 1.0 TLS1.1 TLS1.2

ADG 122 102 101
HDT 343 306 305

As described in the benchmark setup, we measured three different metrics: number of input
messages, number of resets, and computation time. In Table 7.3 and Table 7.4 we show some
of the results: the number of input messages required to identify each model of TLS 1.2 with
every identification method. All methods are deterministic in their input selection with the
exception of HDT Random, this method has therefore been given a separate table showing
the distribution of the values. Similar tables for other metrics and TLS versions can be found
in Appendix C. All the visualizations and tables in this chapter can be generated from the
benchmark results using the tlsprint with the command tlsprint benchmark visualize.
Based on these results, we can start to evaluate the performance of the different identification
methods.

60

Table 7.3: Number of inputs for each model of TLS 1.2

Model ADG HDT First HDT Gini (count) HDT Gini (equal) HDT Gini (recent)
model-1 7 7 5 7 5
model-2 3 3 3 3 3
model-3 9 10 9 8 9
model-4 6 6 4 5 4
model-5 9 10 9 8 9
model-6 7 7 5 7 5
model-7 8 9 12 11 12
model-8 3 3 3 3 3
model-9 8 9 12 11 12
model-10 4 4 7 6 7
model-11 16 16 11 11 11
model-12 3 3 3 3 3
model-13 6 6 6 6 6
model-14 16 16 11 11 11
model-15 11 11 11 11 11

Table 7.4: Number of inputs, distribution of values for each model of TLS 1.2 with HDT

Random

Model mean std min 25% 50% 75% max
model-1 8.89 2.9 5 7 8 11 17
model-2 3.16 0.6 3 3 3 3 7
model-3 9.67 2.44 6 8 9 11 17
model-4 9.61 2.97 3 8 9 12 18
model-5 10.12 2.6 5 8 10 12 16
model-6 6.73 2.7 3 5 6 8 16
model-7 10.48 2.59 5 9 10 13 16
model-8 3.19 0.66 2 3 3 3 6
model-9 12.54 2.52 8 10 13 14 19
model-10 9.54 3.94 3 6 9 13 20
model-11 12.56 2.35 9 11 12 14 18
model-12 4.89 1.58 2 4 4 6 8
model-13 6.92 0.68 6 6 7 7 9
model-14 12.36 2.55 8 11 12 13 18
model-15 11.18 1.29 6 10 11 12 15

7.5.2.1 Detailed results for each model

When we compare the results for the number of inputs required to identify each individual
model, the first observation we can make is that the choice of identification method has a
definite impact on the results. For most models there are some methods that perform better
than others, but no method outperforms all others for all models. For example, in Table 7.3 it
can be seen that ADG requires fewer inputs than HDT Gini (count) for model 9, but more
for model 4. For model 1, HDT Gini (count) performs better than both HDT First and HDT
Gini (equal), but worse for model 7. For TLS version 1.2 HDT First never performs better
than ADG, but it does for model 6 of TLS 1.0 as can be seen in Appendix C. If we look at
Table 7.4 we can see that on average HDT Random is mostly outperformed by the other methods,
with some exceptions. For instance, on average HDT Random performs better than ADG and

61

HDT First for model 14 and better than all Gini variants for model 7. For many models, the
lowest number of inputs is seen in the min column of HDT Random, but the probability of that
happening is relatively low and the max values are the highest of all methods for all models.

For the number of resets the results are the same: there are varying differences between the
methods and no single one outperforms the others. There is a correlation between the number
of inputs and the number of resets: more inputs required often means more resets. Computing
the Pearson correlation between inputs and resets over all the results gives a value of 0.90.
This makes sense as there is only a limited number of inputs one can send before a model
reaches its sink state and a reset is required. A method that requires fewer inputs to identify
a model compared to another method often requires less resets as well. There are exceptions,
but these only involve cases where the number of inputs differ between methods while the
number of resets is the same; an example for this is model 5 of TLS 1.2. There are no models
where two methods require an equal number of inputs but a different number of resets, or
where one method identifies a model with fewer inputs while using more resets.

Two identification methods that do not differ for number of inputs and resets are HDT Gini
(count) and HDT Gini (recent); the results of these two methods are identical for all models.
The other Gini method, HDT Gini (equal), does yield different results which means that the
provided weight function impacts the choices made by the Gini input selector, but only to
a certain extend. We can try to explain the equality by looking at the weights assigned to
the models in Appendix B and by the fact that our current implementation only looks one
input ahead. The weight function count already assigns some models with higher weight,
which impacts the impurity measure of an input when compared to no weights. However,
increasing the weight of some of these models even further, as done with usage, doesn’t result
in a different input being selected.

Looking at the average computation times for each model and method, we see that ADG is
consistently the fastest, followed by HDT First. This was to be expected, since ADG has already
precomputed the inputs and HDT First doesn’t perform any computation either but still has
to navigate and prune the larger tree. HDT Gini (recent) performs worst when it comes
to computation time, this is caused by the overhead of the model weight function. There
is some correlation between the computation time and the number of inputs required, but
the amount varies for the different methods. By computing the Pearson correlation between
inputs and time for each method, we see that HDT First has the weakest correlation with
0.47, followed by ADG and HDT Random with 0.61 and 0.62 respectively. The Gini methods
have a slightly higher correlation; HDT Gini (recent), HDT Gini (count) and HDT Gini
(equal) score 0.72, 0.75 and 0.82. The recorded timing includes the overhead of setting
up the identification. which included creating a copy of the tree. For all methods except
ADG it also includes the time spent condensing and pruning the tree after a descent. It is
likely that these constant factors contribute relatively more for methods that do not perform
any computation, which explains the lower correlation for HDT First, ADG and HDT Random.
For HDT Gini (count) and HDT Gini (recent) the extra time spent evaluating the model
weights is also independent of the number of inputs, as it has more to do with the specific
models being compared.

7.5.2.2 Statistics of aggregated results

While the results for each individual model are insightful, the data is too fine-grained to easily
draw conclusion about how the different methods compare to each other, especially when we
consider that the models might have different weights associated with them. We therefore
include visualizations of the distribution of the values and tables with statistics such as the
mean and quantiles, both for the entire dataset and for each TLS version. Figure 7.13 and
Table 7.5 show an example of such a graph and table, the rest can be found in Appendix D.
These graphs and tables are generated for all weight functions we described in Section 7.5.1

62

in order to evaluate the potential performance in different scenarios. Weighing the results is
done with the Python packages seaborn [40] for the graphs, and with statsmodels [30] for
the tables. The most interesting statistic here is the average number of inputs required, as
this would be the expected performance if the weight function would approximate real-world
usage.

Table 7.5: Benchmark summary: Number of inputs with weight function ‘equal’ for TLS 1.2

Method mean std min 25% 50% 75% max
ADG 7.73 3.99 3 4 7 9 16
HDT First 8 4.07 3 4 7 10 16
HDT Gini (count) 74 3.36 3 4 7 11 12
HDT Gini (equal) 74 298 3 5 7 11 11
HDT Gini (recent) 7.4 3.36 3 4 7 11 12
HDT Random 8.79 3.85 2 6 9 12 20

In Section D.1 the statistics and graphs for the weight function “equal” are shown. Since no
weighing is performed, it simply shows the distribution of the results per model. In the graphs
for each metric we see the difference between the different identification methods we noted
earlier. What we can also see is how the results vary between the TLS versions for the same
method — especially between TLS 1.0 and the other versions — which shows that it is important
to analyze the results separately for each TLS version. Looking at the average number of
inputs, we see that (with the exception of TLS 1.0) the relative order of the different methods
is the same. The three Gini methods perform best with the same average value, followed by
ADG, HDT First and HDT Random in that order. For TLS 1.0 HDT Gini (equal) has a slightly
lower mean than the other Gini methods. For the number of resets this pattern doesn’t hold,
but it’s still one of the Gini methods with the lowest mean for each TLS version.

Looking at the weighted data, the relative order when it comes to average number of inputs
requires remains largely the same, the only difference is that HDT Gini (equal) has a slightly
higher value than the other Gini methods. For the weighted data, this pattern now also holds for
the number of resets: lowest average by HDT Gini (count) and HDT Gini (usage), followed
by HDT Gini (equal), ADG, HDT First and HDT Random in that order. The differences
between the methods become smaller for the “recent” weight function, as can be seen in the
graphs and tables.

The mean isn’t the only important statistic however, the spread of the values also matters.
For both inputs and resets, the standard deviation often follows the pattern we mentioned
above; except for “equal” and “count” where HDT Random has a lower standard deviation than
HDT First for the number of inputs.

Looking at the quantiles for the required number of inputs for all three weight functions, we
can make some observations. The minimal value, which is independent of the weight function,
is the always lowest for HDT Random, the other methods tie in second place. For maximum
value, which is also independent of the weight function, we see that lowest values are always
achieved by one of the Gini methods, followed by ADG with a difference of 4 or 5 more inputs.
The maximum number of inputs for HDT First is either equal to ADG or higher and HDT
Random has the highest maximum values. For the intermediate quantiles 25%, 50% and 75%
the results are more mixed and methods often have the same value, especially when weights
are assigned. The weight function “recent” even causes the values of all methods (with the
exception of HDT Random) to be equal for these quantiles. These observations are the same
when looking at the number of resets.

For the computation time we see that ADG outperforms every other method, being 3 to 10

63

Probability
o o
N w

o
-

0.0

Probability
o o
N w

o
-

Probability
o
N

o
-

Probability
o o
N w

o
A

0.0

Probability
o o
N w

o
-

0.0

Probability
o o
N w

o
-

0.0

All TLS versions TLS 1.0

TLS 1.1

TLS 1.2

|||I||||||II|||.---._ |||I|III|||I|II....._ |||I||||||II|||.__-._ , |||||||||I|...-
10 20 10 20 10 20 10 20

Number of inputs Number of inputs

Number of inputs

Number of inputs

Figure 7.13: Benchmark results: Number of inputs with weight function ‘equal’

64

(quadaJ) U9 1dH (lenba) 119 1aH (unod) 19 1aH Isdi4 1dH oav

wopuey 1dH

times faster on average than the other methods. ADG’s longest computation times are lower
than the average of any other method, and the value for the 75% quantile of ADG is also lower
than the minimal value of any other methods, regardless of the weight function. For the rest
we see the observations we made in the previous section confirmed. The second fastest method
is HDT First and the slowest is HDT Gini (recent). HDT Random is on average about as fast
as HDT Gini (equal) and HDT Gini (count) but with a wider spread and larger variance.

7.5.2.3 Summary

When it comes to number of inputs or resets, the best performance is achieved by one of
the Gini methods, regardless of the weight function or TLS version. They are followed by
ADG, which has slightly higher average values for both inputs and resets but a much lower
computation time. HDT First and HDT Random performed poorly on average with regard to
both inputs and resets and didn’t make up for it with a significantly reduced computation
time.

HDT Gini (count) and HDT Gini (recent) yield the same values for both inputs and resets,
but since HDT Gini (count) is faster it can be considered better. When comparing HDT Gini
(equal) and HDT Gini (count) for the “equal” weight function, neither performs exclusively
better than the other. For all other weight functions HDT Gini (count) results in lower
values. Since the “equal” weight is likely not representative for real world usage, HDT Gini
(count) seems to be the best HDT variant.

Compared to HDT Gini (count), ADG is much faster since it already pre-computed the graph
beforehand. The average computation times of ADG lie between 0.02 and 0.03 seconds, making
it around five times faster than HDT Gini (count), which takes 0.1 to 0.15 seconds on average.
On the other hand, depending on the TLS version and weight function, ADG requires 0.3 to
1.6 more inputs and 0.1 to 0.4 more resets than HDT Gini (count) on average. ADG also has
higher maximum values for both the inputs and resets.

Even though HDT Gini (count) is slower than ADG to compute the inputs, the additional
computation cost is still relatively small. When using these methods to identify a TLS
implementation, there be additional overhead that will make this difference less noticeable,
e.g. network latency and cryptographic operation. If HDT Gini (count) consistently requires
fewer inputs and resets than ADG, and less input messages also means less overhead, it can
even be the case that HDT Gini (count) is faster in practice, but this should be tested.

Even though the benchmark results are in favor of HDT Gini (count), the differences are
generally small, so we are reluctant to conclude that HDT Gini (count) is a better method
for performing fingerprint matching than ADG. In our tests we included two major TLS
implementations, but there are many more. Including more TLS implementations will result
in more unique models, which will inherently increase the complexity of the required input
sequences. This affects both methods and it is possible that the performance of ADG will
be better than HDT Gini (count) with other models. We must also keep in mind that the
implementations of both methods are still a prototype and as such not yet optimized. We
used ADG as a black-box, but modifications to its input selection might be possible. HDT Gini
(count) can definitely be optimized to reduce the computation time. Experimenting with
new input selectors for the HDT might also prove worthwhile, especially those that look more
than one input ahead.

What we can conclude, is that both the adaptive distinguishing graph and the heuristic
decision tree are capable of finding efficient input sequences to perform fingerprint matching.
Even the longest input sequence of ADG, which consists of 16 inputs and 4 resets, is still much
more efficient than using pairwise distinguishing sequences.

65

Chapter 8

Conclusion

Given the broad usage and importance of the Transport Layer Security protocol, it is important
that TLS implementations on production systems do not contain any known vulnerabilities.
In order to look up a TLS implementation in the CVE database — or just check if it is up
to date — its name and version number should be known. Unfortunately, as we mentioned
in the introduction, retrieving this information isn’t straightforward; the lack of a version
banner means fingerprinting is required. We discussed the limitations of existing fingerprinting
methods for TLS in Section 3.2: (passive) content based methods are suitable to fingerprint
an application but not underlying implementation and current behavior based methods are
limited by their reliance on hand-picked sequences.

By leveraging formal methods we developed a new general approach for generating and
matching fingerprints of TLS server implementations. Specifically we used model learning to
generate the fingerprint and approached fingerprint matching as a state identification problem;
both topics were introduced in Section 2.2. To test our approach we applied it to a large
number of versions of two major TLS implementations: OpenSSL (134 versions) and mbed
TLS (114 versions).

A large part of our work was focused on developing tooling and setting up supporting
infrastructure and automation. This was done to improve reproducibility, future-proof our
work through automated updates, and increase the usability of our results. In Chapter 4 we
laid out the design of our solution, which consists of three stages: build, learn and identify. We
implemented these stages as loosely coupled components that can be executed and developed
independent of each other for increased flexibility.

In Chapter 5 we laid out how the build stage consists of multiple pipelines to automatically
fetch, build and package new versions of each implementation. These pipelines are scheduled
to run periodically — currently daily — and this is expected to remain this way after the
conclusion of this thesis project. Even though the build stage is primarily a supporting stage,
it might also prove useful for future research, as the artifacts are portable and published to a
public location.

After the build stage, we used model learning to infer the state machine of each implementation
version for various versions of the TLS protocol. From the previous research we discussed in
Section 3.1 we knew that this model can be seen as a fingerprint for that implementation
version. Similar to the build stage, we implemented learning as a scheduled pipeline that
performs learning daily and publishes the results to a public repository. In Chapter 6 we
discussed the details of our learning setup, the learning alphabet, and the resulting models.
We also noted that not every implementation resulted in a unique model, depending on the
TLS version we had 20 to 15 unique models.

66

With the fingerprints in the form of the learned models we moved to the identification. We
approached fingerprint matching as a state identification problem and applied two methods
for computing distinguishing sequences. A Python package with the name tlsprint was
developed to perform the identification with either method. In Section 7.3.1 we argued that
input sequences to identify each model must exist. At the very least we should be able to
compute pairwise distinguishing sequences, but that is an inefficient approach that scales
poorly.

To compute more efficient sequences, we wanted to apply Lee & Yannakakis’ algorithm for
adaptive distinguishing sequences. Unfortunately, as we discussed in Section 7.3.2, this algo-
rithm has limitations which prevented us from applying it to our models. In Section 7.3.3 we
examined another algorithm called the adaptive distinguishing graph (ADG), a direct general-
ization of Lee & Yannakakis’ algorithm. This generalization didn’t suffer the same limitations
and allowed us to compute distinguishing sequences for our models. After collaborating with
one of its original authors, we successfully integrated the ADG in our solution, as we described
in Section 7.3.4.

In parallel to finding a solution based on Lee & Yannakakis algorithm, we developed a new
method which we called the heuristic decision tree (HDT). This configurable and extendible
approach doesn’t compute a sequence beforehand, but instead compares all models simultane-
ously during the identification. It supports multiple algorithms for selecting the input message
based on heuristics. We presented this method in great detail in Section 7.4.

We compared the ADG and the HDT extensively in Section 7.5. Besides highlighting the
most importance differences, we performed benchmarks in which we measured three metrics:
number of inputs required to successfully identify an implementation, the number of times
the connection must be reset, and computation time spent during the identification. Because
the HDT is configurable with multiple input selectors, we included five variants of the HDT
in the comparison, alongside the ADG. These different methods included two very simple
selectors (random input and always pick the first input) and three versions using the Gini
impurity with different weights associated to the models. The choice of input selectors had a
large impact on the performance of the HDT — the simple selectors performed relatively poor —
but the impact of the weights was smaller.

The best performing identification methods were the ADG and a variant of the HDT using
the Gini impurity we called HDT Gini (count). Compared to HDT Gini (count), the ADG
was much faster since it already pre-computed the graph. The average computation times of
the ADG lied between 0.02 and 0.03 seconds, which made it around five times faster than
HDT Gini (count), which took 0.1 to 0.15 seconds on average. On the other hand, the ADG
required on average 0.3 to 1.6 more inputs and 0.1 to 0.4 more resets than HDT Gini (count),
ADG also had higher maximum values for both the inputs and resets.

Given these results, we concluded that both the ADG and the HDT with the Gini impurity
were capable of finding efficient input sequences to perform fingerprint matching. Even though
HDT Gini (count) scored better for the number of inputs, it would be premature to conclude
that this method performs better than the ADG in general. The current set of models is
relatively small and both methods have room for optimizations. Further research is required
to see how both methods behave when more models are added. For now, we can conclude
that it is possible to automatically find efficient distinguishing sequences with both the ADG
and the HDT.

Most limitations and directions for future work have already been discussed throughout this
thesis, we summarize the most significant here. An important limitation of our method, is that
two implementations sharing the same model cannot be distinguished from each other. For
future work, it is worthwhile to investigate if the number of unique models can be increased,
by making them contain more distinguishing information. There are multiple approaches

67

that might accomplish this, which we discussed in Section 6.5.2. For example, instead of
only looking at the message type of the responses, it might be useful to also look at their
structure and contents. This could be the values of specific fields, or by looking at how the TLS
messages are fragmented in the record layer. Another approach could be to apply additional
fuzzing techniques. In the current learning setup only valid messages are sent, but additional
distinguishing information might be obtained by sending invalid TLS messages as well.

To improve the usability of our approach and tool for real-world usage, there are two additional
suggestions for future work. The first suggestion is to add more TLS implementations the
build and learn stages, making their fingerprints available for the identification. These
implementations could be standalone libraries such as Botan, BoringSSL or LibreSSL, but
also programming language specific implementations such as the crypto/tls package in Go’s
standard library. The second suggestion is to learn models for TLS 1.3, the most recent version
of the protocol. For the most part, this means extending the tools used in the learning setup,
as these do not support TLS 1.3 at the moment.

There is also room for improvement when it comes to the identification process. The imple-
mentations of both the ADG and the HDT are still a prototype and as such not yet optimized.
We used the ADG algorithm as a black-box, but modifications to its input selection might
be possible. The HDT can be optimized to reduce computation time, as this might become
more of an issue when more models are added. Additional pre-computation might help to
reduce the size of the tree itself, which will improve the speed and potentially reduce the
number of inputs further. Experimenting with new input selectors for the HDT might also
prove worthwhile, especially those that look more than one input ahead. More suggestions for
improving the HDT are given in Section 7.4.5.

Lastly an interesting subject for future research is to apply the approach presented here to
other protocols. While we focused on TLS in this thesis, the approach is not tied to the TLS
protocol and can be applied more widely.

68

References

[1]

Adrian, D., Bhargavan, K., Durumeric, Z., Gaudry, P., Green, M., Halderman, J.A., Heninger,
N., Springall, D., Thomé, E., Valenta, L., VanderSloot, B., Wustrow, E., Zanella-Béguelin, S.
and Zimmermann, P. 2018. Imperfect forward secrecy: How Diffie-Hellman fails in practice.
Commaunications of the ACM. 62, 1 (2018), 106-114.

Albanese, M., Battista, E. and Jajodia, S. 2015. A deception based approach for defeating OS
and service fingerprinting. 2015 IEEFE conference on communications and network security
(CNS) (2015), 317-325.

Angluin, D. 1987. Learning regular sets from queries and counterexamples. Information and
computation. 75, 2 (1987), 87-106.

Apple’s SSL/TLS bug: 2014. hitps://www.imperialviolet.org/2014/02/22/ applebug.html.

Aviram, N. et al. 2016. DROWN: Breaking TLS with SSLv2. 25th USENIX security
symposium (Aug. 2016).

Beurdouche, B., Bhargavan, K., Delignat-Lavaud, A., Fournet, C., Kohlweiss, M., Pironti, A.,
Strub, P.-Y. and Zinzindohoue, J.K. 2017. A messy state of the union: Taming the composite
state machines of TLS. Communications of the ACM. 60, 2 (2017), 99-107.

Bos, P. van den and Vaandrager, F.W. 2020. State identification for labeled transition systems
with inputs and outputs. Formal Aspects of Component Software, FACS 2019 (2020), 191-212.

Carroll, T.E., Crouse, M., Fulp, E.W. and Berenhaut, K.S. 2014. Analysis of network address
shuffling as a moving target defense. 2014 IEEFE international conference on communications

(ICC) (2014), 701-706.
Chapter 8. Remote OS detection: 2011. https://nmap.org/book/osdetect.html.

Daniel, L., Poll, E. and de Ruiter, J. 2018. Inferring OpenVPN state machines using protocol
state fuzzing. 2018 IEEE European symposium on security and privacy workshops (EuroS
PW) (2018), 11-19.

Durumeric, Z., Li, F., Kasten, J., Amann, J., Beekman, J., Payer, M., Weaver, N., Adrian, D.,
Paxson, V., Bailey, M. and Halderman, J.A. 2014. The matter of Heartbleed. Proceedings of
the 2014 conference on internet measurement conference (2014), 475-488.

Fardan, N.J.A. and Paterson, K.G. 2013. Lucky thirteen: Breaking the TLS and DTLS record
protocols. 2013 IEEE symposium on security and privacy (2013), 526-540.

Fiterau-Brostean, P., Lenaerts, T., Poll, E., Ruiter, J. de, Vaandrager, F.W. and Verleg, P.
2017. Model learning and model checking of SSH implementations. Proceedings of the 2/th
ACM SIGSOFT international SPIN symposium on model checking of software (New York,
NY, USA, 2017), 142-151.

Frolov, S. and Wustrow, E. 2019. The use of TLS in censorship circumvention. Network and
Distributed Systems Security (NDSS) Symposium 2019 (2019), 24-27.

69

https://www.imperialviolet.org/2014/02/22/applebug.html
https://nmap.org/book/osdetect.html

[15]

[16]

[17]
[18]

[19]

[25]
[26]
[27]

[28]

Greenwald, L.G. and Thomas, T.J. 2007. Toward undetected operating system fingerprinting.
WOOT 07 proceedings of the first USENIX workshop on offensive technologies (2007), 6.

Husék, M., Cermak, M., Jirsik, T. and Celeda, P. 2016. HTTPS traffic analysis and client
identification using passive SSL/TLS fingerprinting. Furasip Journal on Information Security.
2016, 1 (2016), 6.

Isberner, M. 2015. Foundations of active automata learning: An algorithmic perspective.
(2015).

Isberner, M., Howar, F. and Steffen, B. 2015. The open-source LearnLib. Computer aided
verification (Cham, 2015), 487-495.

Kampanakis, P., Perros, H. and Beyene, T. 2014. SDN-based solutions for moving target
defense network protection. Proceeding of IEEFE international symposium on a world of
wireless, mobile and multimedia networks 2014 (2014), 1-6.

Lee, D. and Yannakakis, M. 1996. Principles and methods of testing finite state machines-a
survey. Proceedings of the IEEE. 84, 8 (1996), 1090-1123.

Lee, D. and Yannakakis, M. 1994. Testing finite-state machines: State identification and
verification. IEEFE Transactions on Computers. 43, 3 (1994), 306-320.

Lei, C., Zhang, H.-Q., Tan, J.-L., Zhang, Y.-C. and Liu, X.-H. 2018. Moving target defense
techniques: A survey. Security and Communication Networks. 2018, (2018).

Moller, B., Duong, T. and Kotowicz, K. 2014. This POODLE bites: Exploiting the SSL 3.0
fallback. (2014).

Moore, E.F. 1956. Gedanken-experiments on sequential machines. Automata studies. 34,
(1956), 129-153.

Rescorla, E. 2018. The Transport Layer Security (TLS) protocol version 1.3. RFC 8446; RFC
Editor.

Rescorla, E. and Dierks, T. 2008. The Transport Layer Security (TLS) protocol version 1.2.
RFC 5246; RFC Editor.

Rescorla, E. and Modadugu, N. 2006. Datagram Transport Layer Security. RFC 4347; RFC
Editor.

Ruiter, J. de 2016. A tale of the OpenSSL state machine: A large-scale black-box analysis.
Secure IT systems (Cham, 2016), 169-184.

Ruiter, J. de and Poll, E. 2015. Protocol state fuzzing of TLS implementations. 24th USENIX
security symposium (USENIX security 15) (Washington, D.C., 2015), 193-206.

Seabold, S. and Perktold, J. 2010. Statsmodels: Econometric and statistical modeling with
python. 9th python in science conference (2010).

Shamsi, Z., Nandwani, A., Leonard, D. and Loguinov, D. 2014. Hershel: Single-packet OS
fingerprinting. ACM SIGMETRICS Performance Evaluation Review. 42, 1 (2014), 195-206.

Shu, G. and Lee, D. 2011. A formal methodology for network protocol fingerprinting. IEEE
Transactions on Parallel and Distributed Systems. 22, 11 (Nov. 2011), 1813-1825.

Shu, G. and Lee, D. 2007. Testing security properties of protocol implementations — a machine
learning based approach. 27th international conference on distributed computing systems
(ICDCS’07) (2007), 25-25.

Tan, P.-N., Steinbach, M. and Kumar, V. 2006. Introduction to data mining. Pearson.
TLS fingerprinting: Smarter defending & stealthier attacking: 2015. https://blog.squarelem
on.com /tls-fingerprinting/.

70

https://blog.squarelemon.com/tls-fingerprinting/
https://blog.squarelemon.com/tls-fingerprinting/

TLS fingerprinting with JA3 and JA3S: 2019. htips://engineering.salesforce.com /tls-
fingerprinting-with-ja3-and-ja3s-24 73628559 67.

TLS prober: https:// github.com/W estpointLtd/tls_prober. Accessed: 2019-08-03.

Tretmans, J. 2008. Model based testing with labelled transition systems. Formal methods and
testing. (2008), 1-38.

Vaandrager, F.W. 2017. Model learning. Communications of the ACM. 60, 2 (Jan. 2017),
86-95.

Waskom, M. and team, the seaborn development 2020. Mwaskom/seaborn. Zenodo.
Watson, D., Smart, M., Malan, G.R. and Jahanian, F. 2004. Protocol scrubbing: Network

security through transparent flow modification. IEEE/ACM transactions on Networking. 12,
2 (2004), 261-273.

Way, O., Ray, M., Dispensa, S. and Rescorla, E. Transport Layer Security (TLS) renegotiation
indication extension. RFC 5746; RFC Editor.

Zhuang, R., DeLoach, S.A. and Ou, X. 2014. Towards a theory of moving target defense.
Proceedings of the first ACM workshop on moving target defense (2014), 31-40.

71

https://engineering.salesforce.com/tls-fingerprinting-with-ja3-and-ja3s-247362855967
https://engineering.salesforce.com/tls-fingerprinting-with-ja3-and-ja3s-247362855967
https://github.com/WestpointLtd/tls_prober

Appendix A

Details of learned models

A.1 TLS 1.0

Table A.1: Details of models learned for TLS 1.0

Model Number of states OpenSSL versions mbed TLS versions

model-1 14 33 0
model-2 10 13 0
model-3 14 5 0
model-4 8 13 0
model-5 11 11 0
model-6 11 5 0
model-7 14 7 0
model-8 11 11 0
model-9 13 3 0
model-10 8 9 0
model-11 8 8 0
model-12 14 11 0
model-13 11 4 0
model-14 10 1 0
model-15 6 0 27
model-16 8 0 33
model-17 6 0 24
model-18 6 0 14
model-19 6 0 10
model-20 6 0 6

Table A.2: Implementation versions of models learned for TLS 1.0

Model Implementation Versions

model-1 openssl 0.9.7e, 0.9.7f, 0.9.7g, 0.9.7h, 0.9.71, 0.9.7j, 0.9.7k, 0.9.71,
0.9.7m, 0.9.8, 0.9.8a, 0.9.8b, 0.9.8¢c, 0.9.8d, 0.9.8¢, 0.9.8f,
0.9.8g, 0.9.8h, 0.9.8i, 0.9.8j, 0.9.8k, 0.9.8m, 0.9.8n, 0.9.80,
0.9.8p, 0.9.8q, 0.9.8r, 1.0.0, 1.0.0a, 1.0.0b, 1.0.0c, 1.0.0d,
1.0.0e

model-2 openssl 1.0.2, 1.0.2a, 1.0.2b, 1.0.2¢, 1.0.2d, 1.0.2e, 1.0.2f, 1.0.2g,

72

Model Implementation Versions
1.0.2h, 1.0.2i, 1.0.2j, 1.0.2k, 1.0.21

model-3 openssl 0.9.7, 0.9.7a, 0.9.7b, 0.9.7c, 0.9.7d

model-4 openssl 1.1.0, 1.1.0a, 1.1.0b, 1.1.0c, 1.1.0d, 1.1.0e, 1.1.0f, 1.1.0g,
1.1.0h, 1.1.0i, 1.1.0j, 1.1.0k, 1.1.01

model-5 openssl 0.9.8zb, 0.9.8zc, 0.9.8zd, 0.9.8ze, 0.9.8zf, 0.9.8zg, 0.9.8zh, 1.0.0n,
1.0.00, 1.0.1i, 1.0.1j

model-6 openssl 1.0.0p, 1.0.0q, 1.0.0r, 1.0.0s, 1.0.0t

model-7 openssl 0.9.8y, 1.0.0k, 1.0.01, 1.0.1d, 1.0.1e, 1.0.1f, 1.0.1g

model-8 openssl 1.0.1k, 1.0.11, 1.0.1m, 1.0.1n, 1.0.10, 1.0.1p, 1.0.1q, 1.0.1r,
1.0.1s, 1.0.1t, 1.0.1u

model-9 openssl 0.9.8za, 1.0.0m, 1.0.1h

model-10 openssl 1.0.2m, 1.0.2n, 1.0.20, 1.0.2p, 1.0.2q, 1.0.2r, 1.0.2s, 1.0.2t,
1.0.2u

model-11 openssl 1.1.1, 1.1.1a, 1.1.1b, 1.1.1¢c, 1.1.1d, 1.1.1e, 1.1.1f, 1.1.1g

model-12 openssl 0.9.8u, 0.9.8v, 0.9.8w, 0.9.8x, 1.0.0h, 1.0.0i, 1.0.0j, 1.0.1,
1.0.1a, 1.0.1b, 1.0.1c

model-13 openssl 0.9.8s, 0.9.8t, 1.0.0f, 1.0.0g

model-14 openssl 0.9.81

model-15 mbedtls 2.0.0, 2.1.0, 2.1.1, 2.1.2, 2.1.3, 2.1.4, 2.1.5, 2.1.6,
2.1.7, 2.1.8, 2.1.9, 2.1.10, 2.1.11, 2.1.12, 2.1.13, 2.1.14,
2.1.15, 2.1.16, 2.1.17, 2.1.18, 2.2.0, 2.2.1, 2.3.0, 2.4.0,
2.4.1,24.2,25.0

model-16 mbedtls 2.11.0, 2.12.0, 2.13.0, 2.13.1, 2.14.0, 2.14.1, 2.15.0, 2.15.1,
2.16.0, 2.16.1, 2.16.2, 2.16.3, 2.16.4, 2.16.5, 2.16.6, 2.16.7,
2.16.8, 2.17.0, 2.18.0, 2.18.1, 2.19.0, 2.19.0d1, 2.19.0d2, 2.19.1,
2.20.0, 2.20.0d0, 2.20.0d1, 2.21.0, 2.22.0, 2.22.0d0, 2.23.0, 2.24.0,
3.0.0p1

model-17 mbedtls 2.5.1,2.6.0, 2.6.1, 2.7.0, 2.7.1, 2.7.2, 2.7.3, 2.7.4,
2.7.5,2.7.6,2.7.7,2.7.8,2.7.9, 2.7.10, 2.7.11, 2.7.12,
2.7.13, 2.7.14, 2.7.15, 2.7.16, 2.7.17, 2.8.0, 2.9.0, 2.10.0

model-18 mbedtls 1.2.1,1.2.2,1.2.3, 1.2.4, 1.2.5, 1.2.6, 1.2.7, 1.2.8,
1.2.9, 1.2.10, 1.2.11, 1.3.6, 1.3.7, 1.3.8

model-19 mbedtls 1.0.0, 1.1.0, 1.1.1, 1.1.2, 1.1.3, 1.1.4, 1.1.5, 1.1.6,
1.1.7,1.1.8

model-20 mbedtls 1.3.0, 1.3.1, 1.3.2, 1.3.3, 1.3.4, 1.3.5

A2 TLS 1.1

Table A.3: Details of models learned for TLS 1.1

Model Number of states OpenSSL versions mbed TLS versions

model-1
model-2
model-3
model-4
model-5
model-6
model-7
model-8
model-9

10 13 0
8 13 0
11 2 0
11 11 0
13 1 0
8 9 0
13 1 0
8 8 0
14 3 0

73

Model Number of states OpenSSL versions mbed TLS versions

model-10 13 4 0
model-11 6 0 27
model-12 8 0 33
model-13 6 0 24
model-14 6 0 14
model-15 6 0 10
model-16 6 0 6

74

Table A.4: Implementation versions of models learned for TLS 1.1

Model Implementation Versions

model-1 openssl 1.0.2, 1.0.2a, 1.0.2b, 1.0.2¢, 1.0.2d, 1.0.2¢, 1.0.2f, 1.0.2g,
1.0.2h, 1.0.2i, 1.0.2j, 1.0.2k, 1.0.21

model-2 openssl 1.1.0, 1.1.0a, 1.1.0b, 1.1.0c, 1.1.0d, 1.1.0e, 1.1.0f, 1.1.0g,
1.1.0h, 1.1.0i, 1.1.0j, 1.1.0k, 1.1.01

model-3 openssl 1.0.1i, 1.0.1j

model-4 openssl 1.0.1k, 1.0.11L, 1.0.1m, 1.0.1n, 1.0.10, 1.0.1p, 1.0.1q, 1.0.1r,
1.0.1s, 1.0.1t, 1.0.1u

model-5 openssl 1.0.1h

model-6 openssl 1.0.2m, 1.0.2n, 1.0.20, 1.0.2p, 1.0.2q, 1.0.2r, 1.0.2s, 1.0.2t,
1.0.2u

model-7 openssl 1.0.1d

model-8 openssl 1.1.1, 1.1.1a, 1.1.1b, 1.1.1¢c, 1.1.1d, 1.1.1e, 1.1.1f, 1.1.1g

model-9 openssl 1.0.1e, 1.0.1f, 1.0.1g

model-10 openssl 1.0.1, 1.0.1a, 1.0.1b, 1.0.1c

model-11 mbedtls 2.0.0, 2.1.0, 2.1.1, 2.1.2, 2.1.3, 2.1.4, 2.1.5, 2.1.6,
2.1.7, 2.1.8, 2.1.9, 2.1.10, 2.1.11, 2.1.12, 2.1.13, 2.1.14,
2.1.15, 2.1.16, 2.1.17, 2.1.18, 2.2.0, 2.2.1, 2.3.0, 2.4.0,
2.4.1,24.2,25.0

model-12 mbedtls 2.11.0, 2.12.0, 2.13.0, 2.13.1, 2.14.0, 2.14.1, 2.15.0, 2.15.1,
2.16.0, 2.16.1, 2.16.2, 2.16.3, 2.16.4, 2.16.5, 2.16.6, 2.16.7,
2.16.8, 2.17.0, 2.18.0, 2.18.1, 2.19.0, 2.19.0d1, 2.19.0d2, 2.19.1,
2.20.0, 2.20.0d0, 2.20.0d1, 2.21.0, 2.22.0, 2.22.0d0, 2.23.0, 2.24.0,
3.0.0p1

model-13 mbedtls 2.5.1,2.6.0, 2.6.1, 2.7.0, 2.7.1, 2.7.2, 2.7.3, 2.7.4,
2.7.5,2.7.6,2.7.7,2.7.8, 2.7.9, 2.7.10, 2.7.11, 2.7.12,
2.7.13, 2.7.14, 2.7.15, 2.7.16, 2.7.17, 2.8.0, 2.9.0, 2.10.0

model-14 mbedtls 1.2.1,1.2.2,1.2.3, 1.2.4, 1.2.5, 1.2.6, 1.2.7, 1.2.8,
1.2.9, 1.2.10, 1.2.11, 1.3.6, 1.3.7, 1.3.8

model-15 mbedtls 1.0.0, 1.1.0, 1.1.1, 1.1.2, 1.1.3, 1.1.4, 1.1.5, 1.1.6,
1.1.7, 1.1.8

model-16 mbedtls 1.3.0, 1.3.1, 1.3.2, 1.3.3, 1.3.4, 1.3.5

75

A3 TLS 1.2

Table A.5: Details of models learned for TLS 1.2

Model Number of states OpenSSL versions mbed TLS versions

model-1 10 13 0
model-2 8 13 0
model-3 11 2 0
model-4 11 11 0
model-5 13 1 0
model-6 8 9 0
model-7 13 1 0
model-8 8 8 0
model-9 14 3 0
model-10 13 4 0
model-11 6 0 27
model-12 8 0 33
model-13 6 0 24
model-14 6 0 14
model-15 6 0 6

76

Table A.6: Implementation versions of models learned for TLS 1.2

Model Implementation Versions

model-1 openssl 1.0.2, 1.0.2a, 1.0.2b, 1.0.2¢c, 1.0.2d, 1.0.2e, 1.0.2f, 1.0.2g,
1.0.2h, 1.0.2i, 1.0.2j, 1.0.2k, 1.0.21

model-2 openssl 1.1.0, 1.1.0a, 1.1.0b, 1.1.0c, 1.1.0d, 1.1.0e, 1.1.0f, 1.1.0g,
1.1.0h, 1.1.0i, 1.1.0j, 1.1.0k, 1.1.01

model-3 openssl 1.0.1i, 1.0.1j

model-4 openssl 1.0.1k, 1.0.11L, 1.0.1m, 1.0.1n, 1.0.10, 1.0.1p, 1.0.1q, 1.0.1r,
1.0.1s, 1.0.1t, 1.0.1u

model-5 openssl 1.0.1h

model-6 openssl 1.0.2m, 1.0.2n, 1.0.20, 1.0.2p, 1.0.2q, 1.0.2r, 1.0.2s, 1.0.2t,
1.0.2u

model-7 openssl 1.0.1d

model-8 openssl 1.1.1, 1.1.1a, 1.1.1b, 1.1.1¢c, 1.1.1d, 1.1.1e, 1.1.1f, 1.1.1g

model-9 openssl 1.0.1e, 1.0.1f, 1.0.1g

model-10 openssl 1.0.1, 1.0.1a, 1.0.1b, 1.0.1c

model-11 mbedtls 2.0.0, 2.1.0, 2.1.1, 2.1.2, 2.1.3, 2.1.4, 2.1.5, 2.1.6,
2.1.7, 2.1.8, 2.1.9, 2.1.10, 2.1.11, 2.1.12, 2.1.13, 2.1.14,
2.1.15, 2.1.16, 2.1.17, 2.1.18, 2.2.0, 2.2.1, 2.3.0, 2.4.0,
2.4.1,24.2,25.0

model-12 mbedtls 2.11.0, 2.12.0, 2.13.0, 2.13.1, 2.14.0, 2.14.1, 2.15.0, 2.15.1,
2.16.0, 2.16.1, 2.16.2, 2.16.3, 2.16.4, 2.16.5, 2.16.6, 2.16.7,
2.16.8, 2.17.0, 2.18.0, 2.18.1, 2.19.0, 2.19.0d1, 2.19.0d2, 2.19.1,
2.20.0, 2.20.0d0, 2.20.0d1, 2.21.0, 2.22.0, 2.22.0d0, 2.23.0, 2.24.0,
3.0.0p1

model-13 mbedtls 2.5.1,2.6.0, 2.6.1, 2.7.0, 2.7.1, 2.7.2, 2.7.3, 2.7.4,
2.7.5,2.7.6,2.7.7,2.7.8, 2.7.9, 2.7.10, 2.7.11, 2.7.12,
2.7.13, 2.7.14, 2.7.15, 2.7.16, 2.7.17, 2.8.0, 2.9.0, 2.10.0

model-14 mbedtls 1.2.1,1.2.2,1.2.3, 1.2.4, 1.2.5, 1.2.6, 1.2.7, 1.2.8,
1.2.9, 1.2.10, 1.2.11, 1.3.6, 1.3.7, 1.3.8

model-15 mbedtls 1.3.0, 1.3.1, 1.3.2, 1.3.3, 1.3.4, 1.3.5

7

Appendix B

Model weights

B.1 TLS 1.0
Model equal count recent
model-1 1 33 33
model-2 1 13 13
model-3 1 5 5
model-4 1 13 65
model-5 1 11 11
model-6 1 5 5
model-7 1 7 7
model-8 1 11 11
model-9 1 3 3
model-10 1 9 9
model-11 1 8 160
model-12 1 11 11
model-13 1 4 4
model-14 1 1 1
model-15 1 27 27
model-16 1 33 540
model-17 1 24 108
model-18 1 14 14
model-19 1 10 10
model-20 1 6 6

78

B.2 TLS 1.1

Model equal count recent
model-1 1 13 13
model-2 1 13 65
model-3 1 2 2
model-4 1 11 11
model-5 1 1 1
model-6 1 9 9
model-7 1 1 1
model-8 1 8 160
model-9 1 3 3
model-10 1 4 4
model-11 1 27 27
model-12 1 33 540
model-13 1 24 108
model-14 1 14 14
model-15 1 10 10
model-16 1 6 6

79

B.3 TLS 1.2

Model equal count recent
model-1 1 13 13
model-2 1 13 65
model-3 1 2 2
model-4 1 11 11
model-5 1 1 1
model-6 1 9 9
model-7 1 1 1
model-8 1 8 160
model-9 1 3 3
model-10 1 4 4
model-11 1 27 27
model-12 1 33 540
model-13 1 24 108
model-14 1 14 14
model-15 1 6 6

80

Appendix C

Benchmark results per model

C.1 TLS 1.0

C.1.1 Number of inputs

Table C.1: Number of inputs for each model of TLS 1.0

Model ADG HDT First HDT Gini (count) HDT Gini (equal) HDT Gini (recent)

model-1 10 17 10 12 10
model-2 7 7 7 5 7
model-3 10 17 10 9 10
model-4 3 3 3 3 3
model-5 9 9 9 9 9
model-6 11 10 11 11 11
model-7 4 6 4 5 4
model-8 11 10 11 11 11
model-9 9 9 9 9 9
model-10 7 7 7 5 7
model-11 3 3 3 3 3
model-12 7 9 7 12 7
model-13 6 8 6 3 6
model-14 6 8 6 3 6
model-15 16 21 11 11 11
model-16 3 3 3 3 3
model-17 6 6 6 6 6
model-18 16 16 11 11 11
model-19 16 21 11 11 11
model-20 11 11 11 11 11

81

Table C.2: Number of inputs, distribution of values for each model of TLS 1.0 with HDT
Random

Model mean std min 25% 50% 75% max

model-1 15.74 3.38 13 16 18 23
model-2 10.19 3.63 7 10 13 21
model-3 11.18 3.15 9 11 13 20
model-4 3.22 0.71 3 3 3 7
model-5 9.94 2.94 8 9 12 22
model-6 13.18 2.47 12 13 15 21
model-7 10.07 4.7 6 9 14 24
model-8 13.46 2.35 12 13 15 21
model-9 10.61 3.52 8 10 13 21
model-10 7.4 3.15 5 7 9.25 19
model-11 3.15 0.64 3 3 3 7
model-12 14.98 4.04 12 15 18 23
model-13 9.57 5.04 6 8 13 24
model-14 898 3.92 6 9 12 19
model-15 16.87 2.85 1 15 17 18 23
model-16 4.92 1.59 4 4 7 9
model-17 6.92 0.68 6 7 7 9
model-18 12.88 2.58 11 12 15 18
model-19 17.11 3.27 15 17 20 23
model-20 11.16 1.21 10 11 12 14

00 © 00O WONWTIN WSO WOoo Wt ot

82

C.1.2 Number of resets

Table C.3: Number of resets for each model of TLS 1.0

Model

ADG

HDT First

HDT Gini (count)

HDT Gini (equal)

HDT Gini (recent)

model-1
model-2
model-3
model-4
model-5
model-6
model-7
model-8
model-9
model-10
model-11
model-12
model-13
model-14
model-15
model-16
model-17
model-18
model-19
model-20

[\

W RN R DNDNDND R WWWRFE WWFEDNDW

W UL RN OTWWWHF WWWN WWHE WWW

2
3
2
1
3
3
1
3
3
3
1
2
2
2
3
1
2
3
3
3

3
2
2
1
3
3
1
3
3
2
1
3
1
1
3
1
2
3
3
3

2
3
2
1
3
3
1
3
3
3
1
2
2
2
3
1
2
3
3
3

83

Table C.4: Number of resets, distribution of values for each model of TLS 1.0 with HDT
Random

Model mean std min 25% 50% 75% max
model-1 4.36 1.32 0 4 4 5 7
model-2 3.94 1.12 2 3 4 5 7
model-3 3.01 1.02 0 2 3 4 6
model-4 1.1 0.31 1 1 1 1 3
model-5 3.42 0.92 2 3 3 4 6
model-6 4.12 097 2 3 4 5 7
model-7 3.08 1.39 0 2 3 4 7
model-8 4.24 1.01 1 4 4 5 7
model-9 3.52 1.05 1 3 3.5 4 6
model-10 3.06 1.16 1 2 3 4 7
model-11 1.06 0.34 0 1 1 1 3
model-12 44 1.08 2 4 4 5 7
model-13 3.34 1.46 1 2 3 4 7
model-14 3.02 1.15 0 2 3 4 6
model-15 44 0.85 2 4 4 5 6
model-16 2 0.65 1 2 2 2 3
model-17 2.62 0.49 2 2 3 3 3
model-18 3.68 0.8 2 3 4 4 5
model-19 4.43 0.93 2 4 4.5 5 6
model-20 3.26 0.74 1 3 3 4 4

84

C.1.3 Computation time

Table C.5: Time in seconds for each model of TLS 1.0

Model ADG HDT First HDT Gini (count) HDT Gini (equal) HDT Gini (recent)
model-1 0.0245 0.1975 0.1982 0.1787 0.3405
model-2 0.0296 0.0824 0.1398 0.1233 0.2643
model-3 0.0292 0.196 0.201 0.1642 0.3391
model-4 0.0204 0.041 0.0617 0.0625 0.1452
model-5 0.0296 0.1414 0.1468 0.1466 0.2736
model-6 0.0312 0.0835 0.1403 0.142 0.274
model-7 0.0269 0.1377 0.1188 0.1305 0.2329
model-8 0.0308 0.0853 0.1421 0.1431 0.2732
model-9 0.03 0.142 0.1469 0.1478 0.2788
model-10 0.0296 0.0825 0.1393 0.1237 0.2644
model-11 0.0204 0.0412 0.0632 0.0617 0.1466
model-12 0.029 0.1914 0.1919 0.1775 0.32
model-13 0.0283 0.1904 0.1867 0.1212 0.308
model-14 0.0287 0.1864 0.186 0.1231 0.3095
model-15 0.0315 0.108 0.159 0.1584 0.3151
model-16 0.0229 0.0761 0.1051 0.1063 0.2011
model-17 0.0262 0.0918 0.1401 0.1405 0.2658
model-18 0.0243 0.1053 0.1618 0.1605 0.3119
model-19 0.0316 0.1081 0.1598 0.1608 0.3156
model-20 0.0297 0.1008 0.1635 0.1596 0.3128

85

Table C.6: Time in seconds, distribution of values for each model of TLS 1.0 with HDT
Random

Model mean std min 25% 50% 75% max

model-1 0.2168 0.058 0.0587 0.1757 0.2199 0.2507 0.3954
model-2 0.1312 0.0371 0.0568 0.0949 0.1389 0.1492 0.2298
model-3 0.1818 0.0526 0.0547 0.1459 0.184 0.2141 0.3236
model-4 0.0466 0.0172 0.0385 0.0404 0.0409 0.0427 0.1366
model-5 0.1523 0.0432 0.0807 0.1336 0.1448 0.1736 0.3
model-6 0.1353 0.0359 0.0792 0.1001 0.1414 0.1518 0.2709
model-7 0.177 0.062 0.0474 0.1341 0.1836 0.2146 0.3374
model-8 0.135 0.0373 0.0547 0.0979 0.1417 0.1512 0.235
model-9 0.1784 0.0546 0.0669 0.1436 0.1849 0.209 0.3727
model-10 0.1296 0.0353 0.0632 0.0937 0.1382 0.1468 0.2216
model-11 0.0454 0.0126 0.0398 0.0407 0.0417 0.0428 0.1039
model-12 0.2149 0.0515 0.0955 0.1846 0.2076 0.2503 0.419
model-13 0.1951 0.0634 0.0772 0.1375 0.1944 0.2404 0.3889
model-14 0.1862 0.0562 0.0528 0.1372 0.1865 0.2304 0.3516
model-15 0.1412 0.0317 0.0631 0.1066 0.1512 0.1612 0.2426
model-16 0.1188 0.0286 0.0729 0.082 0.1326 0.1363 0.1949
model-17 0.1309 0.0362 0.076 0.0928 0.1433 0.1494 0.2485
model-18 0.1447 0.0311 0.0879 0.1099 0.1554 0.1644 0.2529
model-19 0.1388 0.036 0.067 0.1065 0.1488 0.16 0.3044
model-20 0.1392 0.0395 0.0621 0.1017 0.1459 0.1596 0.3742

86

C.2 TLS1.1
C.2.1 Number of inputs

Table C.7: Number of inputs for each model of TLS 1.1

Model ADG HDT First HDT Gini (count) HDT Gini (equal) HDT Gini (recent)

model-1 7 7 5 7 5
model-2 3 3 3 3 3
model-3 9 10 9 8 9
model-4 6 6 4 5 4
model-5 9 10 9 8 9
model-6 7 7 5 7 5
model-7 8 9 12 11 12
model-8 3 3 3 3 3
model-9 8 9 12 11 12
model-10 4 4 7 6 7
model-11 16 21 11 11 11
model-12 3 3 3 3 3
model-13 6 6 6 6 6
model-14 16 16 11 11 11
model-15 16 21 11 11 11
model-16 11 11 11 11 11

87

Table C.8: Number of inputs, distribution of values for each model of TLS 1.1 with HDT
Random

Model mean std min 25% 50% @ 75% max

model-9 12.66 2.33
model-10 99 4.01
model-11 17.16 2.99
model-12 4.76 1.57
model-13 6.89 0.62
model-14 12.78 2.74
model-15 17.2 3.26
model-16 11.18 1.33

13 14 18
9 13 21
17 19 23
4 6 8
6.75 7 7 9
11 12 15 18
15 17 20 24
10 11 12 13

model-1 8.98 2.92 7 8.5 11 19
model-2 3.2 0.64 3 3 3 7
model-3 9.66 2.46 8 9 11 16
model-4 9.35 2.94 7 9 11.25 19
model-5 10.6 3.13 8 10 13 18
model-6 7.5 2.85 5 7 9 17
model-7 10.59 2.69 9 10 12.25 18
model-8 3.25 0.71 3 3 3 6

1

7

N O OO DN O WINITtWwo Wo wot
— —
= o

88

C.2.2 Number of resets

Table C.9: Number of resets for each model of TLS 1.1

Model

ADG

HDT First

HDT Gini (count)

HDT Gini (equal)

HDT Gini (recent)

model-1
model-2
model-3
model-4
model-5
model-6
model-7
model-8
model-9
model-10
model-11
model-12
model-13
model-14
model-15
model-16

w

W RN R FEFDNDFEDNWWND W

W UL RN TN DN WWN W W

2
1
3
1
3
2
3
1
3
2
3
1
2
3
3
3

3
1
3
2
3
3
3
1
3
2
3
1
2
3
3
3

2
1
3
1
3
2
3
1
3
2
3
1
2
3
3
3

89

Table C.10: Number of resets, distribution of values for each model of TLS 1.1 with HDT
Random

Model mean std min 25% 50% 75% max

model-1 3.71 1 2 3 4 4 7
model-2 1.1 0.31 1 1 1 1 3
model-3 3.16 0.81 1 3 3 4 5
model-4 3.37 1.14 0 3 3 4 6
model-5 3.5 094 1 3 3 4 5
model-6 3.16 1.04 1 2 3 4 6
model-7 2.99 0.98 1 2 3 4 6
model-8 1.12 0.34 0 1 1 1 2
model-9 3.64 0.88 1 3 4 4 6
model-10 3.04 1.21 0 2 3 4 6
model-11 4.46 0.9 2 4 5 5 6
model-12 1.95 0.68 0 2 2 2 3
model-13 2.64 0.48 2 2 3 3 3
model-14 3.6 0.88 1 3 4 4 5
model-15 4.46 0.96 2 4 4 5 6
model-16 3.22 0.71 1 3 3 4 4

90

C.2.3 Computation time

Table C.11: Time in seconds for each model of TLS 1.1

Model ADG HDT First HDT Gini (count) HDT Gini (equal) HDT Gini (recent)
model-1 0.0233 0.075 0.0938 0.0977 0.1629
model-2 0.0171 0.0346 0.0521 0.0513 0.111
model-3 0.0239 0.0784 0.1438 0.1395 0.2173
model-4 0.0226 0.0748 0.0985 0.0976 0.1686
model-5 0.0236 0.0783 0.1454 0.1414 0.2199
model-6 0.0232 0.0746 0.0941 0.099 0.1623
model-7 0.0227 0.0712 0.1562 0.1547 0.2324
model-8 0.0169 0.0342 0.0526 0.0509 0.1092
model-9 0.0223 0.0682 0.1565 0.1501 0.2363
model-10 0.0211 0.0614 0.1413 0.1347 0.2148
model-11 0.0284 0.1038 0.1556 0.1552 0.2822
model-12 0.0191 0.0673 0.0957 0.0955 0.1659
model-13 0.0228 0.0838 0.1296 0.1309 0.2299
model-14 0.0283 0.0976 0.1496 0.151 0.2775
model-15 0.0275 0.0989 0.1496 0.1501 0.2765
model-16 0.0256 0.0934 0.1499 0.1501 0.2784

91

Table C.12: Time in seconds, distribution of values for each model of TLS 1.1 with HDT
Random

Model mean std min 25% 50% 75% max

model-1 0.1057 0.0266 0.0467 0.0796 0.1125 0.12 0.1647
model-2 0.0374 0.0113 0.0317 0.0334 0.0341 0.0349 0.0987
model-3 0.1141 0.0342 0.0447 0.0871 0.1161 0.1329 0.2478
model-4 0.1057 0.0278 0.0427 0.078 0.1139 0.1231 0.1768
model-5 0.1285 0.0345 0.0627 0.1067 0.1304 0.1507 0.2428
model-6 0.1043 0.0283 0.0448 0.0914 0.1096 0.12 0.179
model-7 0.122 0.0376 0.0512 0.0977 0.12 0.14 0.2857
model-8 0.0379 0.0111 0.0323 0.0338 0.0346 0.0348 0.0934
model-9 0.13 0.0346 0.0482 0.1148 0.1323 0.1452 0.2764
model-10 0.1252 0.0354 0.0421 0.1049 0.1301 0.1451 0.2445
model-11 0.1318 0.0329 0.0792 0.0976 0.1432 0.1521 0.2507
model-12 0.1044 0.0245 0.0408 0.0743 0.1166 0.1202 0.1798
model-13 0.114 0.0259 0.0686 0.0853 0.1224 0.1343 0.1912
model-14 0.1278 0.0295 0.078 0.0987 0.1344 0.1484 0.2174
model-15 0.1278 0.0305 0.0619 0.0982 0.1361 0.1462 0.2181
model-16 0.1244 0.0291 0.0531 0.094 0.1304 0.1446 0.2209

92

C.3 TLS 1.2
C.3.1 Number of inputs

Table C.13: Number of inputs for each model of TLS 1.2

Model ADG HDT First HDT Gini (count) HDT Gini (equal) HDT Gini (recent)

model-1 7 7 5 7 5
model-2 3 3 3 3 3
model-3 9 10 9 8 9
model-4 6 6 4 5 4
model-5 9 10 9 8 9
model-6 7 7 5 7 5
model-7 8 9 12 11 12
model-8 3 3 3 3 3
model-9 8 9 12 11 12
model-10 4 4 7 6 7
model-11 16 16 11 11 11
model-12 3 3 3 3 3
model-13 6 6 6 6 6
model-14 16 16 11 11 11
model-15 11 11 11 11 11

93

Table C.14: Number of inputs, distribution of values for each model of TLS 1.2 with HDT
Random

Model mean std min 25% 50% 75% max

model-1 8.89 29 5 7 8 11 17
model-2 3.16 0.6 3 3 3 3 7
model-3 9.67 2.44 6 8 9 11 17
model-4 9.61 2.97 3 8 9 12 18
model-5 10.12 2.6 5 8 10 12 16
model-6 6.73 2.7 3) 6 8 16
model-7 10.48 2.59 5 9 10 13 16
model-8 3.19 0.66 2 3 3 3 6
model-9 12.54 2.52 8 10 13 14 19
model-10 9.54 3.94 3 6 9 13 20
model-11 12,56 2.35 9 11 12 14 18
model-12 4.89 1.58 2 4 4 6 8
model-13 6.92 0.68 6 6 7 7 9
model-14 12.36 2.55 8 11 12 13 18
model-15 11.18 1.29 6 10 11 12 15

94

C.3.2 Number of resets

Table C.15: Number of resets for each model of TLS 1.2

Model

ADG

HDT First

HDT Gini (count)

HDT Gini (equal)

HDT Gini (recent)

model-1
model-2
model-3
model-4
model-5
model-6
model-7
model-8
model-9
model-10
model-11
model-12
model-13
model-14
model-15

w

WHERNEFEF R RFRPNREFEDNDWWNDWR

W HE N R FEFDNFEDNDWWNDWRFEW

2
1
3
1
3
2
3
1
3
2
3
1
2
3
3

3
1
3
2
3
3
3
1
3
2
3
1
2
3
3

2
1
3
1
3
2
3
1
3
2
3
1
2
3
3

95

Table C.16: Number of resets, distribution of values for each model of TLS 1.2 with HDT
Random

Model mean std min 25% 50% 75% max
model-1 3.62 0.93 2 3 4 4 6
model-2 1.08 0.29 1 1 1 1 3
model-3 3.2 0.84 2 3 3 4 5
model-4 3.44 0.98 0 3 3 4 6
model-5 3.4 0.8 1 3 3 4 5
model-6 2.9 1.06 1 2 3 4 6
model-7 298 0.95 0 2 3 4 5
model-8 1.08 0.34 0 1 1 1 2
model-9 3.63 0.94 1 3 4 4 6
model-10 2.91 1.2 0 2 3 4 5
model-11 3.5 0.76 2 3 3 4 5
model-12 1.94 0.69 0 1 2 2 3
model-13 2.63 0.48 2 2 3 3 3
model-14 3.54 0.87 1 3 4 4 5
model-15 3.22 0.71 1 3 3 4 4

96

C.3.3 Computation time

Table C.17: Time in seconds for each model of TLS 1.2

Model ADG HDT First HDT Gini (count) HDT Gini (equal) HDT Gini (recent)
model-1 0.0223 0.0725 0.0936 0.0967 0.1603
model-2 0.016 0.0336 0.0517 0.0508 0.1075
model-3 0.0232 0.0765 0.1437 0.1393 0.2141
model-4 0.0221 0.0737 0.0961 0.0969 0.163
model-5 0.0229 0.0777 0.1425 0.14 0.2132
model-6 0.0224 0.0733 0.0946 0.0982 0.1597
model-7 0.0219 0.068 0.155 0.1506 0.2281
model-8 0.0161 0.0343 0.0514 0.0518 0.1049
model-9 0.0219 0.0675 0.1546 0.1508 0.2295
model-10 0.0208 0.0606 0.1416 0.1355 0.2132
model-11 0.0271 0.0971 0.1491 0.1489 0.2631
model-12 0.0186 0.0675 0.0948 0.0953 0.1604
model-13 0.0218 0.0843 0.1286 0.1264 0.2178
model-14 0.0268 0.0964 0.1494 0.1488 0.2628
model-15 0.0249 0.0917 0.1498 0.1489 0.2625

97

Table C.18: Time in seconds, distribution of values for each model of TLS 1.2 with HDT
Random

Model mean std min 25% 50% 75% max

model-1 0.1049 0.0277 0.0472 0.0792 0.1126 0.1207 0.2001
model-2 0.0379 0.013 0.032 0.0341 0.0343 0.0345 0.104
model-3 0.1158 0.033 0.0533 0.0872 0.1172 0.1349 0.2296
model-4 0.1035 0.027 0.0424 0.0759 0.1127 0.118 0.1833
model-5 0.1248 0.0316 0.0602 0.1052 0.1281 0.1406 0.2408
model-6 0.1047 0.0257 0.0471 0.0941 0.1112 0.1197 0.1674
model-7 0.1187 0.0335 0.0442 0.1023 0.12 0.1377 0.2372
model-8 0.0376 0.0111 0.0308 0.0342 0.0343 0.0345 0.1064
model-9 0.1319 0.0338 0.0506 0.115 0.1375 0.1491 0.2453
model-10 0.1214 0.0372 0.0415 0.0933 0.129 0.1443 0.2312
model-11 0.1229 0.0269 0.0753 0.0936 0.1308 0.1429 0.2023
model-12 0.1019 0.0242 0.0412 0.0726 0.1164 0.1201 0.1417
model-13 0.1148 0.0269 0.0703 0.0848 0.1278 0.1347 0.1991
model-14 0.1263 0.0285 0.053 0.0983 0.1347 0.1442 0.2129
model-15 0.1194 0.0267 0.0727 0.092 0.128 0.1419 0.1836

98

Appendix D

Weighted benchmark statistics

D.1 Weight function “equal”

D.1.1 Number of inputs

Table D.1: Benchmark summary: Number of inputs with weight function ‘equal’ for all TLS

versions

Method mean std min 25% 50% 75% max
ADG 8.22 4.15 3 6 7 11 16
HDT First 9.16 5.18 3 6 9 11 21
HDT Gini (count) 7.63 3.2 3 5 7 11 12
HDT Gini (equal) 7.57 3.2 3 5 8 11 12
HDT Gini (recent) 7.63 3.2 3 5 7 11 12
HDT Random 9.78 4.67 2 6 10 13 24

Table D.2: Benchmark summary:

Number of inputs with weight function

‘equal’ for TLS 1.0

Method mean std min 25% 50% 75% max
ADG 8.55 4.06 3 6 8 11 16
HDT First 10.05 5.41 3 6 9 13 21
HDT Gini (count) 7.8 291 3 6 8 11 11
HDT Gini (equal) 7.65 3.48 3 4 9 11 12
HDT Gini (recent) 7.8 2091 3 6 8 11 11
HDT Random 10.58 5.03 2 7 11 14 24

Table D.3: Benchmark summary:

Number of inputs with weight function

‘equal’ for TLS 1.1

Method mean std min 25% 50% 75% max
ADG 825 4.35 3 5 7 10 16
HDT First 9.12 5.6 3 5 8 10 21
HDT Gini (count) 7.62 3.37 3 4 8 11 12
HDT Gini (equal) 7.62 3.02 3 5 7 11 11
HDT Gini (recent) 7.62 3.37 3 4 8 11 12

99

Method mean std min 25% 50% 75% max
HDT Random 9.73 4.73 2 6 9 13 24

Table D.4: Benchmark summary: Number of inputs with weight function ‘equal’ for TLS 1.2

Method mean std min 25% 50% 75% max
ADG 773 3.99 3 4 7 9 16
HDT First 8 4.07 3 4 7 10 16
HDT Gini (count) 74 3.36 3 4 7 11 12
HDT Gini (equal) 74 298 3 5 7 11 11
HDT Gini (recent) 7.4 3.36 3 4 7 11 12
HDT Random 8.79 3.85 2 6 9 12 20

100

Probability
o o
N w

o
a

Probability
o o o
- N w

o
)

Probability
IS4 o o
- N w

o
o

Probability
o o
N w

e
o

0.0

Probability
o o
N w

o
a

0.0

Probability
o o
N w

°
b

0.0

All TLS versions TLS 1.0

|||I||||||II|||._--._ |||I|III|||IIII....._
10 20 10 20

Number of inputs Number of inputs

TLS 1.1 TLS 1.2

||II||||||II|||.___._] |||||||||I|...-
10 20 10 20

Number of inputs Number of inputs

Figure D.1: Benchmark results: Number of inputs with weight function ‘equal’

101

(Jenba) 119 1aH (Qunod) 1uIo 1aH Isdi4 1aH oav

(quadaJ) U9 1aH

wopuey 1aH

D.1.2 Number of resets

Table D.5: Benchmark summary: Number of resets with weight function ‘equal’ for all TLS
versions

Method mean std min 25% 50% 75% max
ADG 241 1.01 1 2 2 3 4
HDT First 2.61 1.14 1 2 3 3 5
HDT Gini (count) 225 0.81 1 2 2 3 3
HDT Gini (equal) 233 0.83 1 2 3 3 3
HDT Gini (recent) 225 081 1 2 2 3 3
HDT Random 3.1 1.31 0 2 3 4 7

Table D.6: Benchmark summary: Number of resets with weight function ‘equal’ for TLS 1.0

Method mean std min 25% 50% 75% max
ADG 2.45 0.97 1 2 2 3 4
HDT First 2.85 1.06 1 2 3 3 5
HDT Gini (count) 23 0.78 1 2 2 3 3
HDT Gini (equal) 22 087 1 1 2 3 3
HDT Gini (recent) 2.3 0.78 1 2 2 3 3
HDT Random 3.3 1.39 0 2 3 4 7

Table D.7: Benchmark summary: Number of resets with weight function ‘equal’ for TLS 1.1

Method mean std min 25% 50% 75% max
ADG 2.44 1.06 1 1 2 3 4
HDT First 2.56 1.27 1 1 2 3 5
HDT Gini (count) 225 0.83 1 1 2 3 3
HDT Gini (equal) 244 0.79 1 2 3 3 3
HDT Gini (recent) 2.25 0.83 1 1 2 3 3
HDT Random 3.07 1.28 0 2 3 4 7

Table D.8: Benchmark summary: Number of resets with weight function ‘equal’ for TLS 1.2

Method mean std min 25% 50% 75% max
ADG 2.33 1.01 1 1 2 3 4
HDT First 2.33 1.01 1 1 2 3 4
HDT Gini (count) 2.2 0.83 1 1 2 3 3
HDT Gini (equal) 24 0.8 1 2 3 3 3
HDT Gini (recent) 22 0.83 1 1 2 3 3
HDT Random 2.87 1.16 0 2 3 4 6

102

o
o

Probability
o
Ny

o
)

0.0

o
o

Probability
o
B

o
N

0.0

o
o

Probability
o
B

o
N

0.0

0.6

Probability
o
B

o
)

0.0

0.6

Probability
o
Ny

o
)

0.0

0.6

Probability
o
B

0.

N

0.0

All TLS versions TLS 1.0 TLS 1.1 TLS 1.2

0 2 4 6 0 2 4 6 0 2 4 6 0 2 4 6

Number of resets Number of resets Number of resets Number of resets

Figure D.2: Benchmark results: Number of inputs with weight function ‘equal’

103

>
o
@

(quadau) U9 1aH (Jenba) 119 1aH (Qunod) 1uIo 1aH Isdi4 1aH

wopuey 1aH

D.1.3 Computation time

Table D.9: Benchmark summary: Time in seconds with weight function ‘equal’ for all TLS
versions

Method mean std min 25% 50% 75% max
ADG 0.0245 0.0046 0.0155 0.0219 0.0235 0.0286 0.088
HDT First 0.0914 0.0414 0.032 0.0682 0.0811 0.0996 0.2644

HDT Gini (count) 0.1316 0.0391 0.0481 0.0967 0.1423 0.154 0.3045
HDT Gini (equal) 0.1267 0.0346 0.0486 0.098 0.139 0.1499 0.249
HDT Gini (recent) 0.2313 0.0645 0.0984 0.1663 0.2315 0.2761 0.4352
HDT Random 0.1229 0.0534 0.0308 0.0871 0.1244 0.1489 0.419

Table D.10: Benchmark summary: Time in seconds with weight function ‘equal’ for TLS 1.0

Method mean std min 25% 50% 75% max
ADG 0.0277 0.0045 0.0155 0.0266 0.0293 0.0299 0.088
HDT First 0.1194 0.0498 0.0387 0.083 0.106 0.1831 0.2644

HDT Gini (count) 0.1476 0.0387 0.0587 0.1382 0.1457 0.1833 0.3045
HDT Gini (equal) 0.1366 0.0322 0.0589 0.1217 0.1418 0.1596 0.2374
HDT Gini (recent) 0.2746 0.0553 0.1401 0.2631 0.2771 0.3134 0.4352
HDT Random 0.147 0.0617 0.0385 0.1016 0.1458 0.1837 0.419

Table D.11: Benchmark summary: Time in seconds with weight function ‘equal’ for TLS 1.1

Method mean std min 25% 50% 75% max
ADG 0.023 0.0033 0.0162 0.0216 0.023 0.0247 0.029
HDT First 0.0747 0.0201 0.0321 0.0675 0.0748 0.0913 0.198

HDT Gini (count) 0.1228 0.0358 0.0494 0.0947 0.1417 0.1494 0.2607
HDT Gini (equal) 0.1219 0.0351 0.0486 0.0971 0.1369 0.1496 0.249
HDT Gini (recent) 0.2091 0.0557 0.1054 0.1641 0.2174 0.2728 0.3643
HDT Random 0.1088 0.0408 0.0317 0.0806 0.1162 0.1373 0.2857

Table D.12: Benchmark summary: Time in seconds with weight function ‘equal’ for TLS 1.2

Method mean std min 25% 50% 75% max
ADG 0.0219 0.0031 0.0156 0.0209 0.0221 0.0232 0.0279
HDT First 0.0716 0.0185 0.032 0.067 0.0733 0.0831 0.1553

HDT Gini (count) 0.1198 0.0357 0.0481 0.0941 0.14 0.1488 0.2583
HDT Gini (equal) 0.1186 0.0342 0.0489 0.096 0.1349 0.1482 0.209
HDT Gini (recent) 0.1973 0.0507 0.0984 0.1597 0.2129 0.2291 0.3349
HDT Random 0.1058 0.0396 0.0308 0.0761 0.1149 0.1344 0.2453

104

All TLS versions TLS 1.0 TLS1.1 TLS 1.2

o o
o)

Probability
o
N

Probability
o o
iS o

o
N

o
)

Probability
o o o
IS o ©

o
N

o
<)

o o
o ©

Probability
o
'

oo b |.II|||I_. | |||||||.| | | I||| | |I|||

o
o

Probability
o
N

0.0] l.|| .-lll- ||I II-_I | al ||| |||.|_ -| || |||| || |. l| .||| .|_

o
o

Probability
o
B

0.2
|._||III||||||I|.... |I___|I|I..||||||.|| |._|II||||||||I.. _____ |._III|||||||||..__)
0.0
0.0 0.2 0.4 0.0 0. 04 0.0 0.2 0.4 0.0 0.2 0.4
Time in seconds Time in seconds Time in seconds Time in seconds

Figure D.3: Benchmark results: Computation time with weight function ‘equal’

105

(quadaJ) U9 1aH (jenba) 119 1aH (3unod) 1uI9 1aH isdi4 1dH oav

wopuey 1adH

D.2

D.2.1 Number of inputs

Weight function “count”

Table D.13: Benchmark summary: Number of inputs with weight function ‘count’ for all TLS

versions

Table D.14:

Table D.15:

Table D.16:

Method mean std min 25% 50% 75% max
ADG 8.33 4.9 3 3 7 11 16
HDT First 9.47 6.3 3 3 7 16 21
HDT Gini (count) 7 3.32 3 3 6 11 12
HDT Gini (equal) 7.26 3.44 3 3 6 11 12
HDT Gini (recent) 7 3.32 3 3 6 11 12
HDT Random 9.61 5.14 2 6 8 13 24

Benchmark summary: Number of inputs with weight function

‘count’ for TLS 1.0

Method mean std min 25% 50% 75% max
ADG 8.71 4.54 3 6 9 11 16
HDT First 10.65 6.39 3 6 9 17 21
HDT Gini (count) 7.68 3.12 3 6 9 11 11
HDT Gini (equal) 7.94 3.6 3 5 9 11 12
HDT Gini (recent) 7.68 3.12 3 6 9 11 11
HDT Random 10.81 5.43 2 6 11 15 24

Benchmark summary: Number of inputs with weight function

‘count’ for TLS 1.1

Method mean std min 25% 50% 75% max
ADG 8.28 5.22 3 3 6 16 16
HDT First 9.36 6.88 3 3 6 16 21
HDT Gini (count) 6.65 3.41 3 3 6 11 12
HDT Gini (equal) 6.89 3.27 3 3 6 11 11
HDT Gini (recent) 6.65 3.41 3 3 6 11 12
HDT Random 9.36 5.33 2 5 8 13 24

Benchmark summary: Number of inputs with weight function

‘count’ for TLS 1.2

Method mean std min 25% 50% 75% max
ADG 7.83 5.02 3 3 6 11 16
HDT First 7.87 5.02 3 3 6 11 16
HDT Gini (count) 6.39 3.33 3 3 5 11 12
HDT Gini (equal) 6.65 3.2 3 3 6 11 11
HDT Gini (recent) 639 333 3 3 5 11 12
HDT Random 811 3.92 2 5 7 11 20

106

o
w

Probability
o
N

e
o

0.0

Probability
o o
N w

o
a

o
)

Probability
o o
N w

°
b

o
o

o
w

Probability
o
N

o
-

0.0

o
w

Probability
o
N

e
o

0.0

o
W

Probability
o
N

o
a

0.0

All TLS versions TLS 1.0

10 20 10 20

Number of inputs Number of inputs

TLS 1.1 TLS 1.2

|III‘I|||IIII|II-..I- ‘III‘IIIIIIIIII-
10 20 10 20

Number of inputs Number of inputs

Figure D.4: Benchmark results: Number of inputs with weight function ‘count’

107

(quadaJ) U9 1aH (Jenba) 119 1aH (Qunod) 1uIo 1aH Isdi4 1aH oav

wopuey 1aH

D.2.2 Number of resets

Table D.17: Benchmark summary: Number of resets with weight function ‘count’ for all TLS
versions

Method mean std min 25% 50% 75% max
ADG 2.38 1.14 1 1 2 3 4
HDT First 2.61 1.34 1 1 3 3 5
HDT Gini (count) 2.06 0.84 1 1 2 3 3
HDT Gini (equal) 22 0.86 1 1 2 3 3
HDT Gini (recent) 2.06 0.84 1 1 2 3 3
HDT Random 3.05 1.35 0 2 3 4 7

Table D.18: Benchmark summary: Number of resets with weight function ‘count’ for TLS 1.0

Method mean std min 25% 50% 75% max
ADG 2.4 1.07 1 2 2 3 4
HDT First 2.79 1.27 1 2 3 3 5
HDT Gini (count) 219 08 1 2 2 3 3
HDT Gini (equal) 226 0.85 1 1 3 3 3
HDT Gini (recent) 2.19 0.8 1 2 2 3 3
HDT Random 3.33 1.43 0 2 3 4 7

Table D.19: Benchmark summary: Number of resets with weight function ‘count’ for TLS 1.1

Method mean std min 25% 50% 75% max
ADG 242 1.21 1 1 2 4 4
HDT First 2.63 1.51 1 1 2 4 5
HDT Gini (count) 1.99 0.85 1 1 2 3 3
HDT Gini (equal) 2.18 0.87 1 1 2 3 3
HDT Gini (recent) 1.99 0.85 1 1 2 3 3
HDT Random 299 1.35 0 2 3 4 7

Table D.20: Benchmark summary: Number of resets with weight function ‘count’ for TLS 1.2

Method mean std min 25% 50% 75% max
ADG 2.33 1.18 1 1 2 3 4
HDT First 2.33 1.18 1 1 2 3 4
HDT Gini (count) 1.93 0.84 1 1 2 3 3
HDT Gini (equal) 2.13 0.87 1 1 2 3 3
HDT Gini (recent) 1.93 0.84 1 1 2 3 3
HDT Random 272 1.14 0 2 3 4 6

108

Probability
© o o o
N w » wv

e
.

0.0

Probability
o o o o o
R N

o
)

Probability
o o o o o
R N N

o
o

Probability
o o o o
vNoWwo» W

°
b

0.0

Probability
© o o o
N w » wv

e
-

0.0

e o o
w > U

Probability
o
N

0.

1
0.0

All TLS versions TLS 1.0 TLS1.1 TLS 1.2

0 2 4 6 0 2 4 6 0 2 4 6 0 2 4 6

Number of resets Number of resets Number of resets Number of resets

Figure D.5: Benchmark results: Number of inputs with weight function ‘count’

109

>
o
@

(quadaJ) U9 1aH (Jenba) 119 1aH (Qunod) 1uIo 1aH Isdi4 1aH

wopuey 1aH

D.2.3 Computation time

Table D.21: Benchmark summary: Time in seconds with weight function ‘count’ for all TLS
versions

Method mean std min 25% 50% 75% max
ADG 0.0243 0.0048 0.0155 0.0208 0.0233 0.0285 0.088
HDT First 0.092 0.0399 0.032 0.0719 0.0839 0.0998 0.2644

HDT Gini (count) 0.1275 0.0392 0.0481 0.0954 0.1384 0.15 0.3045
HDT Gini (equal) 0.1249 0.0357 0.0486 0.0966 0.1305 0.1502 0.249
HDT Gini (recent) 0.2309 0.0676 0.0984 0.164 0.2322 0.2771 0.4352
HDT Random 0.1219 0.0522 0.0308 0.0863 0.122 0.1467 0.419

Table D.22: Benchmark summary: Time in seconds with weight function ‘count’ for TLS 1.0

Method mean std min 25% 50% 75% max
ADG 0.0269 0.0049 0.0155 0.0231 0.0291 0.03 0.088
HDT First 0.1142 0.0488 0.0387 0.0815 0.1039 0.1411 0.2644

HDT Gini (count) 0.1455 0.0388 0.0587 0.1362 0.1445 0.1617 0.3045
HDT Gini (equal) 0.1392 0.0334 0.0589 0.1214 0.143 0.1605 0.2374
HDT Gini (recent) 0.2728 0.0582 0.1401 0.2604 0.2731 0.316 0.4352
HDT Random 0.145 0.0602 0.0385 0.1017 0.1441 0.169 0.419

Table D.23: Benchmark summary: Time in seconds with weight function ‘count’ for TLS 1.1

Method mean std min 25% 50% 75% max
ADG 0.0231 0.0039 0.0162 0.0192 0.0229 0.0275 0.029
HDT First 0.0777 0.0215 0.0321 0.0674 0.075 0.0972 0.198

HDT Gini (count) 0.1164 0.0347 0.0494 0.0945 0.1279 0.149 0.2607
HDT Gini (equal) 0.1166 0.0346 0.0486 0.0955 0.1284 0.1494 0.249
HDT Gini (recent) 0.2075 0.0597 0.1054 0.164 0.2153 0.2759 0.3643
HDT Random 0.1072 0.0386 0.0317 0.0798 0.1159 0.1343 0.2857

Table D.24: Benchmark summary: Time in seconds with weight function ‘count’ for TLS 1.2

Method mean std min 25% 50% 75% max
ADG 0.0219 0.0036 0.0156 0.0187 0.022 0.0252 0.0279
HDT First 0.0748 0.0195 0.032 0.0672 0.0735 0.0922 0.1553

HDT Gini (count) 0.1127 0.0333 0.0481 0.0936 0.0967 0.1477 0.2583
HDT Gini (equal) 0.1126 0.0325 0.0489 0.0953 0.0984 0.1474 0.209
HDT Gini (recent) 0.1943 0.0535 0.0984 0.1594 0.1641 0.2602 0.3349
HDT Random 0.1036 0.0368 0.0308 0.0752 0.1146 0.1328 0.2453

110

o o
IN o

Probability

o
N

Probability
o o
FS o

o
N

o
o

o
o

Probability
o
IS

Probability
o

Probability

Probability

0.0 0.2 0.4 0.0 0 0.4 0.0

All TLS versions TLS 1.0 TLS1.1 TLS1.2

M mn
0.2 0.4 0.0 0.2 0.4

Time in seconds Time in seconds Time in seconds Time in seconds

Figure D.6: Benchmark results: Computation time with weight function ‘count’

111

(JuadaJ) U9 1adH (jenba) 119 1aH (3unod) 1uI9 1aH Isdi4 1dH oav

wopuey 1adH

D.3 Weight function “recent”
D.3.1 Number of inputs

Table D.25: Benchmark summary: Number of inputs with weight function ‘recent’ for all TLS
versions

Method mean std min 25% 50% 75% max
ADG 4.32 3.08 3 3 3 3 16
HDT First 4.55 3.83 3 3 3 3 21
HDT Gini (count) 4.05 2.25 3 3 3 3 12
HDT Gini (equal) 41 235 3 3 3 3 12
HDT Gini (recent) 4.05 2.25 3 3 3 3 12
HDT Random 5.64 3.39 2 3 4 7 24

Table D.26: Benchmark summary: Number of inputs with weight function ‘recent’ for TLS 1.0

Method mean std min 25% 50% 75% max
ADG 4.6 3.29 3 3 3 6 16
HDT First 5.06 4.48 3 3 3 6 21
HDT Gini (count) 4.35 2.53 3 3 3 6 11
HDT Gini (equal) 4.42 2.76 3 3 3 5 12
HDT Gini (recent) 4.35 2.53 3 3 3 6 11
HDT Random 6.14 4 2 3) 7 24

Table D.27: Benchmark summary: Number of inputs with weight function ‘recent’ for TLS 1.1

Method mean std min 25% 50% 75% max
ADG 4.23 3.07 3 3 3 3 16
HDT First 443 3.85 3 3 3 3 21
HDT Gini (count) 3.93 212 3 3 3 3 12
HDT Gini (equal) 3.97 2.14 3 3 3 3 11
HDT Gini (recent) 3.93 2.12 3 3 3 3 12
HDT Random 5.47 3.3 2 3 4 7 24

Table D.28: Benchmark summary: Number of inputs with weight function ‘recent’ for TLS 1.2

Method mean std min 25% 50% 75% max
ADG 4.11 2.84 3 3 3 3 16
HDT First 4.12 2.85 3 3 3 3 16
HDT Gini (count) 3.86 2 3 3 3 3 12
HDT Gini (equal) 3.9 203 3 3 3 3 11
HDT Gini (recent) 386 2 3 3 3 3 12
HDT Random 5.27 2.6 2 3 4 7 20

112

Probability
o o o o
N IS o)

o
)

Probability
o o o o
N S o ©

o
)

Probability
o o o o
N S o ©

o
o

Probability
o o o o
N S o ©

o
<)

Probability
o o o o
N IS o)

o
)

Probability
o o o
IS o ©

o
)

0.0

All TLS versions

_||III|__--____- R |IIII|-_-.-_---
10 20 10

Number of inputs

TLS 1.0
N A
L. ..
L _a
d . n
L _a

20
Number of inputs

TLS1.1

10

Number of inputs

TLS 1.2

Number of inputs

Figure D.7: Benchmark results: Number of inputs with weight function ‘recent’

113

(quadaJ) U9 1aH (Jenba) 119 1aH (Qunod) 1uIo 1aH Isdi4 1dH oav

wopuey 1dH

D.3.2 Number of resets

Table D.29: Benchmark summary: Number of resets with weight function ‘recent’ for all TLS

versions

Method mean std min 25% 50% 75% max
ADG 1.36 0.77 1 1 1 1 4
HDT First 1.41 0.89 1 1 1 1 5
HDT Gini (count) 1.3 0.6 1 1 1 1 3
HDT Gini (equal) 1.32 0.64 1 1 1 1 3
HDT Gini (recent) 1.3 06 1 1 1 1 3
HDT Random 2.06 1.03 0 1 2 3 7

Table D.30: Benchmark summary: Number of resets with weight function ‘recent’ for TLS 1.0

Method mean std min 25% 50% 75% max
ADG 1.41 0.8 1 1 1 2 4
HDT First 1.51 0.99 1 1 1 2 5
HDT Gini (count) 1.36 0.66 1 1 1 2 3
HDT Gini (equal) 1.38 0.7 1 1 1 2 3
HDT Gini (recent) 1.36 0.66 1 1 1 2 3
HDT Random 2.19 1.15 0 1 2 3 7

Table D.31: Benchmark summary: Number of resets with weight function ‘recent’ for TLS 1.1

Method mean std min 25% 50% 75% max
ADG 1.35 0.78 1 1 1 1 4
HDT First 1.39 0.92 1 1 1 1 5
HDT Gini (count) 1.27 0.57 1 1 1 1 3
HDT Gini (equal) 1.3 0.62 1 1 1 1 3
HDT Gini (recent) 1.27 0.57 1 1 1 1 3
HDT Random 2.02 1 0 1 2 3 7

Table D.32: Benchmark summary: Number of resets with weight function ‘recent’ for TLS 1.2

Method mean std min 25% 50% 75% max
ADG 1.32 0.73 1 1 1 1 4
HDT First 1.32 0.73 1 1 1 1 4
HDT Gini (count) 1.25 0.55 1 1 1 1 3
HDT Gini (equal) 1.29 0.6 1 1 1 1 3
HDT Gini (recent) 1.25 0.55 1 1 1 1 3
HDT Random 1.95 091 0 1 2 3 6

114

All TLS versions TLS 1.0

Probability
o o
= o

o
N

o
)

Probability
o o o
» o [ec]

o
)

o
)

Probability
o o o
» o [ee]

o
)

Probability
o o o o
» o © o

o
N

o
<)

Probability
o o o
B [} [oo}

o
N

o
)

Probability
o o o
» o [ec]

o
N

4 6 0 2 4 6 0 2 4 6 0 2 4 6

0.0 —
0 2
Number of resets Number of resets Number of resets Number of resets

Figure D.8: Benchmark results: Number of inputs with weight function ‘recent’

115

(quadaJ) U9 1aH (Jenba) 119 1aH (Qunod) 1uIo 1aH Isdi4 1aH oav

wopuey 1aH

D.3.3 Computation time

Table D.33: Benchmark summary: Time in seconds with weight function ‘recent’ for all TLS
versions

Method mean std min 25% 50% 75% max
ADG 0.0208 0.0036 0.0155 0.0186 0.0193 0.0229 0.088
HDT First 0.0691 0.0263 0.032 0.0656 0.0676 0.0763 0.2644

HDT Gini (count) 0.0984 0.0316 0.0481 0.0923 0.0955 0.1055 0.3045
HDT Gini (equal) 0.098 0.0306 0.0486 0.0927 0.0957 0.1066 0.249
HDT Gini (recent) 0.1807 0.0525 0.0984 0.1588 0.1652 0.2019 0.4352
HDT Random 0.0981 0.0438 0.0308 0.0675 0.1145 0.1308 0.419

Table D.34: Benchmark summary: Time in seconds with weight function ‘recent’ for TLS 1.0

Method mean std min 25% 50% 75% max
ADG 0.0236 0.0033 0.0155 0.0224 0.0229 0.0235 0.088
HDT First 0.0796 0.0342 0.0387 0.0746 0.0759 0.0831 0.2644

HDT Gini (count) 0.1093 0.0347 0.0587 0.1025 0.1052 0.138 0.3045
HDT Gini (equal) 0.1082 0.0321 0.0589 0.1038 0.1059 0.1228 0.2374
HDT Gini (recent) 0.2126 0.0535 0.1401 0.1957 0.2012 0.2625 0.4352
HDT Random 0.1117 0.0507 0.0385 0.076 0.1314 0.1385 0.419

Table D.35: Benchmark summary: Time in seconds with weight function ‘recent’ for TLS 1.1

Method mean std min 25% 50% 75% max
ADG 0.0197 0.0027 0.0162 0.0187 0.0191 0.0193 0.029
HDT First 0.0637 0.0189 0.0321 0.0651 0.0672 0.0682 0.198

HDT Gini (count) 0.0934 0.0283 0.0494 0.0934 0.0954 0.0961 0.2607
HDT Gini (equal) 0.0931 0.0291 0.0486 0.0927 0.0951 0.0963 0.249
HDT Gini (recent) 0.1673 0.0449 0.1054 0.1625 0.1652 0.1664 0.3643
HDT Random 0.0918 0.0381 0.0317 0.0666 0.1143 0.1204 0.2857

Table D.36: Benchmark summary: Time in seconds with weight function ‘recent’ for TLS 1.2

Method mean std min 25% 50% 75% max
ADG 0.0189 0.0025 0.0156 0.0182 0.0186 0.0189 0.0279
HDT First 0.0632 0.0182 0.032 0.0659 0.0672 0.0678 0.1553

HDT Gini (count) 0.0917 0.0276 0.0481 0.0915 0.0946 0.0955 0.2583
HDT Gini (equal) 0.0918 0.0272 0.0489 0.092 0.0953 0.0959 0.209
HDT Gini (recent) 0.1597 0.0407 0.0984 0.1554 0.1598 0.1612 0.3349
HDT Random 0.0897 0.0371 0.0308 0.0661 0.0933 0.1203 0.2453

116

Probability
o o o
> o »

o
)

o
)

Probability
o o o
> o »

o
N

o
)

Probability
o o o
> o »

e
N

o
<)

Probability
o o o
~ o

o
)

o
<)

Probability
o o o
> o ®

o
)

Probability
o o o
> o »

o
N

o
2

All TLS versions TLS 1.0 TLS1.1 TLS 1.2

| .lll.,llll.,
0.2 04 0. 0.2 0.4 . 0.4 0.0 0.2 0.4
Time in seconds Time in seconds Time in seconds Time in seconds

b, b |||.._ 1 ||IL
0 0 0.0 0.2
Figure D.9: Benchmark results: Computation time with weight function ‘recent’

117

(quadaJ) U9 1aH (lenb3) 1u19 1AH (3unod) 1uI9 1aH isdi4 1dH oav

wopuey 1adH

	Introduction
	Preliminaries
	Transport Layer Security
	Architecture
	Record protocol
	Handshake protocol

	State machines
	Mealy Machine
	Model learning
	State identification

	Related work
	Model learning
	Fingerprinting TLS
	Fingerprinting TLS usage of client and server applications
	Fingerprinting TLS server implementations

	Formal fingerprint matching

	Solution overview
	Target protocol versions
	Architecture
	Implementation details

	Building the implementations
	Build manager
	Overview
	Details

	Build components
	Overview
	Details

	Adding a new implementation
	Overview
	Details

	Discussion
	New versions
	Maintenance
	Future work

	Automated learning
	Learn manager
	Overview
	Details

	Learning setup
	Overview
	Details

	Learning alphabet
	Learning results
	Discussion
	Implementation details
	Models

	Identification
	General process
	Removing duplicate models
	Construct model tree
	Identification

	Running example
	Distinguishing sequences
	Pairwise distinguishing sequences
	Lee & Yannakakis
	Adaptive distinguishing graph
	Integrating ADG

	Heuristic decision tree
	Normalize models
	Identification procedure
	Input selection
	Example
	Future work

	Comparison
	Benchmark setup
	Benchmark results

	Conclusion
	References
	Details of learned models
	TLS 1.0
	TLS 1.1
	TLS 1.2

	Model weights
	TLS 1.0
	TLS 1.1
	TLS 1.2

	Benchmark results per model
	TLS 1.0
	Number of inputs
	Number of resets
	Computation time

	TLS 1.1
	Number of inputs
	Number of resets
	Computation time

	TLS 1.2
	Number of inputs
	Number of resets
	Computation time

	Weighted benchmark statistics
	Weight function ``equal''
	Number of inputs
	Number of resets
	Computation time

	Weight function ``count''
	Number of inputs
	Number of resets
	Computation time

	Weight function ``recent''
	Number of inputs
	Number of resets
	Computation time

