TsuNAME vulnerability Public disclosure

Giovane C. M. Moura¹, Sebastian Castro², John Heidemann³, Wes Hardaker³ 1: SIDN Labs, 2: InternetNZ, 3: USC/ISI

OARC 35 Virtual Meeting 2021-05-06

• We followed responsible disclosure guidelines

Date	Туре	Group
2021-02-05	Private Disclosure	OARC34
2021-02-22	Private Disclosure	APTLD
2021-02-23	Private Disclosure	CENTR
2021-03-04	Private Disclosure	LACTLD
2021-02-18-2021-05-05	Private Disclosure	Private
2021-05-06	Public Disclosure	OARC35
2021-05-06	Public Disclosure	https://tsuname.io
2021-02-18–2021-05-05 2021-05-06	Private Disclosure Public Disclosure	Private OARC35

Table 1: TsuNAME disclosure timeline

Results obtained since the notifications

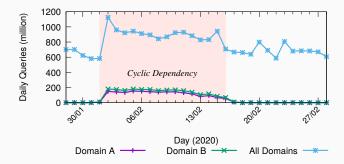
- 1. Two large public resolver services have repaired their code
 - Google Public DNS and Cisco Public DNS (kudos!)
- 2. Several contributors to CycleHunter
 - Shane Kern, Hugo Salgado, and several others users
 - https://github.com/SIDN/CycleHunter/graphs/contributors
 - 9 forks, 27 issues (5 open), 4 stars. Great response from the community
- 3. We know far more about the problem now
- 4. We are public releasing two documents:
 - Security Advisory: https://tsuname.io/advisory.pdf
 - Tech Report: https://tsuname.io/tech-report.pdf

TL;DR

- We disclose TsuNAME, a vulnerability that can be used to DoS authoritative servers
- It requires three things:
 - 1. Cyclic dependent NS records
 - 2. Vulnerable resolvers
 - 3. User queries only to start/drive the process
- Problem: we've seen servers getting significant traffic for days
 - That's enough for going from 10qps to 5600qps (and more)
- To mitigate it:
 - 1. Auth Ops: detect cyclic records: use CycleHunter
 - BUT: difficult to prevent quick NS changes
 - 2. Resolver Ops/Dev: change resolvers
 - 3. (no way to prevent triggering queries)

tsuNAME

- We call it tsuNAME
- Website: https://tsuname.io



- Cyclic Dependencies were first described in Pappas2009¹
- Simplest cyclic dependency: two domains, one nameservers
 each
 - cat.nl NS ns1.dog.nz
 - dog.nz NS ns1.cat.nl
- Observed in the wild: the .nz event
 - Two domains, two nameservers each. Event lasting 16 days starting Feb 1 2020. **50% traffic surge**
 - Mostly A and AAAA queries for the nameservers
 - Mostly coming from Google Public DNS

¹Vasileios Pappas, Zhiguo Xu, Songwu Lu, Daniel Massey, Andreas Terzis, and Lixia Zhang. **Impact of configuration errors on DNS robustness**. SIGCOMM Comput. Commun. Rev., August 2004.

TsuNAME.nz event: traffic surged

- On 2020-02-01, two .nz domains (A and B) were misconfigured with cyclic dependency
- Total traffic surged 50%

Domains A and B: from 30k queries to 334M tops (x10⁴)

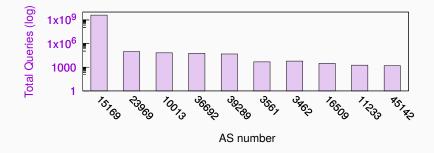
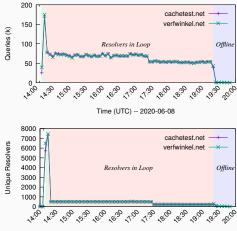


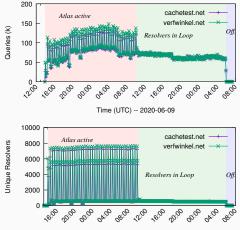
Figure 1: Queries for cyclic domains: 99% from Google (AS15169)


- Observed events caused by accident. Other ccTLDs have seen them too.
- An attacker could:
 - Hold multiple domains (register or already has)
 - Intentionally create cycles by changing NS records
 - Inject queries by using, for example, a botnet
- Easy and straigforward to setup, it can be weaponized

No: we managed to reproduce it multiple times

- 1. Lower bound with 1 query/resolver from Ripe Atlas
- 2. Influence of recurrent queries with Ripe Atlas
- 3. Domain without Atlas queries

Some resolvers will loop without user queries


- 10k Ripe Atlas : 1 query to their local resolvers
- View from Auth Servers

Time (UTC) -- 2020-06-08

Recurrent Queries Amplify the Problem

- 10k Ripe Atlas : 1 query every 10min to local resolvers
- View from Auth Servers

Time (UTC) -- 2020-06-09

1. Fix Resolvers: (notification)

- We notified Google and OpenDNS; both fixed their software
- Other DNS implementations confirmed as unaffected

2. Auth OPs: prevention:

- remove cyclic dependencies from zone files with CycleHunter, our open-source tool
- Give plently of leeway to be aware and prepare to solve cycles affecting their zones

1. Fix Resolvers: (notification)

- We notified Google and OpenDNS; both fixed their software
- Other DNS implementations confirmed as unaffected
- 2. Auth OPs: prevention:
 - remove cyclic dependencies from zone files with CycleHunter, our open-source tool
 - Give plently of leeway to be aware and prepare to solve cycles affecting their zones

CycleHunter

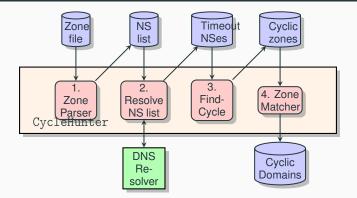
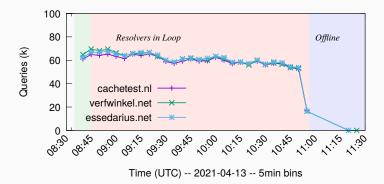


Figure 2: CycleHunter workflow

- We release it at: https://tsuname.io
- Also in GitHub at: https://github.com/SIDN/CycleHunter

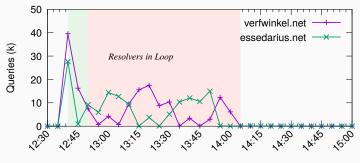
Not many cyclic dependencies in the wild, ATM

zone	Size	NSSet	Cyclic	Affec.	Date
.com	151445463	2199652	21	1233	2020-12-05
.net	13444518	708837	6	17	2020-12-10
.org	10797217	540819	13	121	2020-12-10
.nl	6072961	79619	4	64	2020-12-03
.se	1655434	27540	0	0	2020-12-10
.nz	718254	35738	0	0	2021-01-11
.nu	274018	10519	0	0	2020-12-10
Root	1506	115	0	0	2020-12-04
Total	184409371	3602839	44	1435	


Table 2: CycleHunter: evaluated DNS Zones

• Human error plays a role

We evaluated other resolver software too


- No recurring cycles with these (they stop):
 - Unbound
 - BIND
 - PowerDNS
 - Public DNS: Quad1,Quad9
- But we don't know what other other ASes are running
- Whatever they are running, expect a long time to be fixed
- Looping old resolvers:
 - PowerDNS 3.6.2-2, from 2014 [1]
 - Windows 2008R2.

1. Longer cycles (triple) cause even more problems

Figure 3: TripleDep measurement: Queries to authoritative servers (5min bins)

2. CNAME cycles are not as problematic

Time (UTC) -- 2021-04-13 -- 5min bins

Figure 4: CNAME measurement: Querie to authoritative servers (5min bins)

3. Other ccTLDs have seen such events too

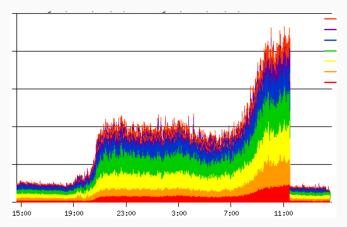


Figure 5: TsuNAME event at an Anonymous EU-based ccTLD operator.

5. We identified the root causes of looping:

- Some resolvers will loop indefinitely (∞)
- Others won't loop, but they **won't cache**: every new client query trigger new queries

The fix: detect the loop, and cache it.

6. We confirmed Google fixed its Public DNS

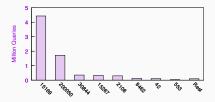
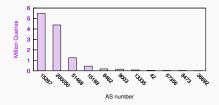



Figure 6: Measurement BEFORE Google fix

Figure 7: Measurement AFTER Google fix

- Changes may occur at any time:
 - cat.nl NS ns1.dog.nz
 - ns1.dog.nz A 192.168.1.1

5 min later:

- cat.nl NS ns1.dog.nz
- ns1.dog.nz NS ns1.dog.nl
- This will find problems at point in time
- There is no continuous solution

- Changes may occur at any time:
 - cat.nl NS ns1.dog.nz
 - ns1.dog.nz A 192.168.1.1

5 min later:

- cat.nl NS ns1.dog.nz
- ns1.dog.nz NS ns1.dog.nl
- This will find problems at point in time
- There is no continuous solution

- Changes may occur at any time:
 - cat.nl NS ns1.dog.nz
 - ns1.dog.nz A 192.168.1.1

5 min later:

- cat.nl NS ns1.dog.nz
- ns1.dog.nz NS ns1.dog.nl
- This will find problems at point in time
- There is no continuous solution

• Maybe

- as in the .nl example, only having cyclic dependencies does not lead to DDoS per se
- You'll need vulnerable resolvers to find you
- We need someone to inject traffic
- An attacker can create these situations if they want

• Maybe

- as in the .nl example, only having cyclic dependencies does not lead to DDoS per se
- You'll need vulnerable resolvers to find you
- We need someone to inject traffic
- An attacker can create these situations if they want

• Maybe

- as in the .nl example, only having cyclic dependencies does not lead to DDoS per se
- You'll need vulnerable resolvers to find you
- We need someone to inject traffic
- An attacker can create these situations if they want

- RRL converts queries to TCP
- Resolvers react to that by retrying heavily²
- So they you have yet another amplification
- It may slow your attack, but it's not going to block it

²G. C. M. Moura, John Heidemann, Moritz Müller, Ricardo de O. Schmidt and Marco Davids. When the Dike Breaks: Dissecting DNS Defenses During DDoS. Proceedings of the 2018 ACM Internet Measurement Conference

Question: I have RRL, so I'll be OK, right?

• **No**

- RRL converts queries to TCP
- Resolvers react to that by retrying heavily²
- · So they you have yet another amplification
- It may slow your attack, but it's not going to block it

²G. C. M. Moura, John Heidemann, Moritz Müller, Ricardo de O. Schmidt and Marco Davids. When the Dike Breaks: Dissecting DNS Defenses During DDoS. Proceedings of the 2018 ACM Internet Measurement Conference

- RRL converts queries to TCP
- Resolvers react to that by retrying heavily²
- · So they you have yet another amplification
- · It may slow your attack, but it's not going to block it

²G. C. M. Moura, John Heidemann, Moritz Müller, Ricardo de O. Schmidt and Marco Davids. When the Dike Breaks: Dissecting DNS Defenses During DDoS. Proceedings of the 2018 ACM Internet Measurement Conference

Discussion

- If you're an auth operator, check your zone
 - You can use CycleHunter
 - Don't forget about collateral damage
- if you're a resolver op/dev,
 - Detect cyclic dependencies and return SERVFAIL
 - Cache the SERVFAIL for future clients
 - Check your amplification factor

Slides and report :

• https://tsuname.io/

Many thanks to OARC team for supporting us!

Many thanks to the **community** for their help

Discussion

- If you're an auth operator, check your zone
 - You can use CycleHunter
 - Don't forget about collateral damage
- if you're a resolver op/dev,
 - Detect cyclic dependencies and return SERVFAIL
 - Cache the SERVFAIL for future clients
 - Check your amplification factor

Slides and report :

• https://tsuname.io/

Many thanks to OARC team for supporting us!

Many thanks to the community for their help

[1] POWERDNS.

Changelogs for all pre 4.0 releases.

https: //doc.powerdns.com/recursor/changelog/pre-4.0.html, Jan. 2021.