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Abstract

This thesis explores a novel approach to detecting maliciously registered domain
names by embedding these domains. The approach consists of two main steps: em-
bedding each domain, and then classifying it. This method minimizes the need for
extensive feature engineering and reduces the amount of data while leveraging the
embedder’s ability to extract relations between domains. The thesis investigates dif-
ferent embedding techniques, such as Doc2Vec and Meta-Prod2Vec, and evaluates
their effectiveness in representing DNS data. The resulting embeddings are tested
with various classifiers, including logistic regression, KNN, and random forest, to
determine the optimal combination for detecting malicious domains. Our best clas-
sifier achieved a precision of 36% with a recall of 18%, indicating that the use of
domain embeddings for classifying newly registered malicious domains is possible.
In approximately half of the correctly classified cases, the classifier detects mali-
cious domains before Netcraft, on average 18 hours sooner. While the performance
of our approach is not convincing enough to replace existing detection techniques,
it could be a valuable addition for any Top Level Domain in order to detect some
malicious domains sooner.
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1
Introduction

This chapter describes the motivation behind this thesis, it briefly explains the problems
faced when trying to detect malicious domains and introduces the concept of representation
learning. It also introduces the thesis’ research questions, its contributions and its overall
structure.

1.1. Problem Statement
Cybercrime is a serious problem globally. According to the Netherlands official statistical of-
fice (CBR), 2.2 million people were victims of some sort of online crime in 2022[40] – 14.8% of
the population, a staggering number. Similarly, in the United States, the Federal Bureau of In-
vestigation (FBI) estimates that cybercrime costs 12B USD annually [44], showing phishing
as the most common form of cybercrime. In Europe, the European Union Agency for Cy-
bersecurity (ENISA) has also deemed phishing as the most common attack vector granting
attackers access to systems in Europe [10].

The mitigation of malicious domain activity is a complex undertaking [27], involving mul-
tiple different parties. These include the hosting providers [41] and the DNS [26] providers.
Hosting providers provide their clients with the physical infrastructure, such as servers, to
host a website. DNS (Domain Name System) is the protocol which allows machines to con-
vert human-readable domain names into IP addresses. DNS providers are entities which
facilitate this process. An attacker operating a malicious domain requires both web hosting
and DNS hosting to work in order to carry out their operations. This means that any party
involved in either of these two areas can stop these attacks.

In this thesis, we propose an approach to detect maliciously registered domains, applicable
on the DNS level. More specifically, it makes use of representation learning as an intermedi-
ary step before classifying malicious domains. In our case a malicious domain name is any
domain that is used for malicious purposes, such as phishing, distributing malware and con-
trolling botnets. Many different mitigation strategies for the DNS level already exist [48, 4,
30, 31, 23, 7, 3, 6], however all of these methods require the researchers to do some form of
feature engineering. This means that they have to consider which attributes from DNS data
(and potentially outside sources) they should use and how to properly encode them. Our ap-
proach on the other hand only uses a limited amount of features in order to detect domains.

1



1.2. Research Questions 2

The dataset we are using has over 60 features per DNS query, and we only use a small subset
of this, exploring variations with 10, 3 and 1 feature per query to detect malicious domains.

There are a multitude of reasons why we chose to explore this method. The first reason being
that it significantly reduces the amount of data we need to work with. The ".nl" zone receives
around 2-3 billion DNS queries a day, each query having over 60 attributes. Additionally,
representation learning is able to capture meaning and relationships between domains and
the devices querying them, which hopefully make malicious domains stand out and make
them detectable by classifiers. While the same data could theoretically be used directly on
these classifiers, this would not yield any results as they are not designed to work with this
sort of data.

This work is inspired by a blog post published by SIDN Labs about embedding resolvers and
domains [42], with our goal extending the embedding of domains to detect maliciously regis-
tered ones. We apply our proposed method to all ".nl" domain names, which are maintained
by SIDN [36, 39]. Our proposed method itself, however, is not specific to any particular
domain zone, meaning that it can be applied to any Top Level Domain (TLD).

Representation learning is a technique which is able to learn representations in the form of
vectors (also called embeddings) from raw data alone. In our case we use it to represent any
given domain based on DNS query data. The learned representations of these domains are
in the form of vectors, which can then be used as features for classifiers in order to detect
malicious domains. This means that our proposed method has two major steps:

1. Use word embeddings to learn embeddings (in the form of a vector) of domains based
on which devices query those domains.

2. Use the learned vectors as features for classification algorithms in order to detect ma-
licious domains.

In order to approach our goal of detecting malicious domains based on DNS query data, we
form a research question as well as three research sub-questions in Section 1.2.

1.2. Research Questions
The main research question of the thesis is as follows:

• How can we apply a combination of representation learning and classification algo-
rithms to detect newly registered malicious domains?

To answer the main research question, we identify the following sub-questions which are
each covered in their respective chapters:

1. How canwe represent DNSQueryData in a latent space using representation learning?

2. Which classifiers and parameters lead to the highest average precision?

3. What is the Precision and Recall of the final malicious domain classifier?

1.3. Representation Learning
In this section we briefly explain representation learning as well as how it relates to this
thesis. Representation learning is a type of machine learning technique which is able to learn



1.3. Representation Learning 3

alternate representations from raw data. A famous example are word embeddings, which are
able to learn vector representations of words based on their meaning and relationship with
one another.

Representation Learning is useful inmany differentways, such as capturing complex relation-
ships between occurrences and allowing for data reduction. In the case of word embeddings,
many relationships between words such as gender or time, can be effectively captured in the
word’s embeddings. Embeddings can be regarded as compact summaries of the meaning of
their words and their relationship to others. In our case, it serves two main purposes: the
first is data reduction by selecting a limited amount of features from queries, which are trans-
formed into a small vector of consistent size. The second reason is that embeddings are able
to effectively capture the meaning of concepts and the relationship between them.

1.3.1. Toy Example
In this subsection we cover a toy example of word embeddings as well as how they can be
applied in our use case. We to this in order to give the reader more context on the topic
before delving into further chapters, which rely on this understanding.

Word Embeddings
Word embedding methods were designed to capture the meaning of words as vectors by
looking at the context in which these words appear. We can represent these words as vectors
based on attributes that they have, as can be seen in Table 1.1. We specify the rough size and
speed in some space for the following words: "Dog", "Cat", "Elephant", "Car", "Truck" and
"Scooter". These attributes together can be seen as a multi-dimensional vector representing
the object, which we can plot in a graph, see Figure 1.1.

Word Size Speed
Dog 0.5 0.7
Cat 0.3 0.5

Elephant 2.5 0.5
Truck 2.8 1.5
Car 1.5 2

Scooter 0.7 0.8

Table 1.1: Example values for different words with respect to their size and speed

In practice depicting words in just two dimensions, in this case speed and size, omits a lot of
important information. If one has no information on the actual meaning of these words, one
might assume that a cat, car and scooter are all very similar concepts because they are close
together in the vector space.

This is where word embeddings come into play, as they are able to learn representations/vec-
tors of the words in its vocabulary. Words with similar meaning are situated close to each
other in this embedding space, while words with very different meaning are located far away.

Word embedding algorithmsmade their way out of Natural Language Processing and are now
used to embed all kinds of different concepts for recommendation systems, from products in
stores [15], to music [16, 17], to short-term accommodation rental [14]. Additionally, word
embeddings have already been applied to DNS query data in order to embed domains as well
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Figure 1.1: Toy example of embedded words

as the devices querying them [42]. This is a good indication that word embeddings could
also be a good stepping stone in enabling the detection of malicious domains based on their
traffic.

1.4. Methodology
In this section we briefly cover our methodology for detecting maliciously registered do-
mains. A simplified version of the methodology is shown in Figure 1.2.

The first step in our process is collecting raw DNS data from queries sent to authoritative
servers, and extracting a varying number of features. These features are used as input to
the embedder, which in turn generates an embedding for each domain (Described more thor-
oughly in Chapter 4).

Now that the domains are embedded, we have a new representation of them that is more com-
pact and has relationships between the different domains. This allows us to use a traditional
classifier to make predictions using the embeddings as input.

1.5. Contribution
Our main contribution with this thesis is exploring the feasibility of detecting newly regis-
tered malicious domains by embedding domains using their DNS traffic data. More specifi-
cally, the goal is to detect malicious domains before Netcraft [28], a service offering a blacklist
of domains.

In order to achieve this, we first explore feasible ways to embed domains using DNS query
data and choose the most optimal one. We then experiment with different classifiers and
hyperparameters to determine the optimal classifier. We examine the performance of our
final classifier in a setting identical to a real-world deployment scenario.
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Figure 1.2: Rough Example of Proposed Method

1.6. Thesis Structure
In this report we first cover background information necessary for the readers to understand
the thesis, such as what DNS or Representation Learning are.

We later cover related work to this thesis, which includes more advanced embedding meth-
ods, as well as the state of the art of malicious domain detection. We explore the topic of
malicious domain registration using DNS query traffic more closely.

After these two more informative chapters, we go about answering our three research sub-
questions, one chapter per question.

Chapter 4 covers the process of embedding domain names based on DNS Query data. It
explores different embedding techniques and determines which would be the best for our
use case.

Chapter 5 covers the process of using the embeddings to classify maliciously registered do-
mains, as well as different improvements that can me made. More specifically, it explores the
different hyperparameters of the embedder and classifier and determines the best ones.

Using the knowledge gained in Chapter 5, we are able to construct a final classifier in Chap-
ter 6. We test the performance of this classifier using a setup identical to deployment; we use
all registration data within a certain time frame, we train the classifier over multiple months,
and we separate the training months from the testing months.

After covering the three sub-questions in the chapters, we can answer the main research
question in the conclusion, as well as give an explanation of the results achieved during the
thesis.



2
Background

2.1. DNS
The Domain Name System (DNS) is a network protocol that enables human-readable do-
mains, such as "tudelft.nl" to be translated into machine-readable IP addresses. This allows
us humans to type in a url when navigating to a website instead of having to remember the
IP address.

More specifically, if someone queries "tudelft.nl", then the device sends this query to a DNS
resolver, which is typically handled by the user’s Internet Service Provider (ISP). This resolver
recursively sends requests to nameservers until it has received the IP address for the domain
the user is looking for. If we consider the domain "tudelft.nl", then the first query that the
resolverwould sendwould be to one of the 13 root DNS nameservers. These have information
on all of the Top Level Domains (TLD) (e.g. .com, .nl, .org), the organizations in charge of the
TLD’s are called registries. Now that the resolver has the IP address for the ".nl" authoritative
nameservers, it then sends a request to that server for "tudelft.nl", which then references
a second level domain. These are primarily managed by the domain’s registrars, who are
the link between the domain’s owner (registrant) and the registry. The nameservers of the
registrants can then either return an IP address (meaning that the DNS searchwas successful),
or they can point to other nameservers. The resolver keeps following this trail of references
until it gets the domain’s IP address (or a DNS resolution failure occurs).

In practice this process is a bit more complicated, since resolvers also store the IP addresses
they’ve requested in their cache. This means that if the resolver now gets another request
for "tudelft.nl", instead of going through the entire process again, it already has the domain
stored in its cache and can just send it straight back to the user. This is also true for TLDs,
so if "sidn.nl" is now requested, the resolver might not have the address of the entire domain
saved, however it does still remember the IP address for the ".nl" domain, so it can skip the
step of asking for that IP address to the root DNS nameserver.

The key thing to remember for this thesis is that when a domain name is requested by a
device, this request is sent to a resolver, which then sends queries to the related nameservers
in order to resolve the domain’s IP address. Since this method makes use of the vantage point
of registries (in this case ".nl"), it is able to see all queries to domains in the zone, as well as

6
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what resolvers they came from. Using this traffic data our method infers information about
the domain itself, namely whether it is malicious or not.

2.1.1. SIDN
This master thesis is done in conjunction with an internship at SIDN Labs. SIDN (Stichting
Internet Domeinregistratie Nederland) is the entity responsible for registering .nl domain
names, as well as making them available on the DNS [36]. SIDN Labs is SIDN’s research arm,
tasked with further enhancing the security of the internet infrastructure through applied
technical research [39].

2.1.2. Malicious Domain Names
Malicious domain names are domains which are used for illegal online activity. Examples
of this include phishing websites, Command and Control (C&C) servers for botnets and
malware distributors. We distinguish malicious domains into two different categories, ma-
liciously registered and compromised domains. In both cases the domain serves malicious
purposes in the present, however the maliciously registered domain was registered by an
attacker with the express purpose of executing malicious tasks. A compromised domain on
the other hand is a benign domain which is being used for malicious purposes by an attacker.
This can happen in many different ways, an example would be an attacker gaining access to
the device hosting domain, or the attacker changing the IP address associated with a certain
domain.

In this thesis we specifically look at maliciously registered domains because this significantly
reduces training complexity. By reducing the problem to detecting maliciously registered
domains, we limit the amount of domains that have to be embedded from the total of around
6.2 Million [38] domains, to around 2.000 domains per day. This reduces training times for
the embeddings from multiple hours for a few days of data, to multiple hours for an entire
year of data.

2.2. Representation Learning
All types of Machine Learning (ML) require some form of representations of data in order to
function effectively. These representations, also called features, are measurable properties
or attributes from the training data. An example of a feature might be numerical, such as
size or speed, as discussed in Subsection 1.3.1, or categorical, like whether it is an animal or
a vehicle.

Each feature that is used is supposed to provide the machine learning model with useful
information that, when combined with other features, allows it to make accurate predictions.

The traditional way of doing this is feature engineering, where the developer selects fea-
tures they think might be useful. Extracting good features from data is an important part
of Machine Learning, as they are the information the ML model receives in order to make
predictions. In machine learning there is the saying "garbage in, garbage out", if the features
we select are not useful, then no matter how good the machine learning method is, it will
not be able to make good predictions [48]. With feature engineering there is the possibility
that important features might be overlooked and not included, resulting in worse results.
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This is where representation learning comes in, a technique which automatically transforms
raw data into a usable representation of that data. A particular kind of representation learn-
ing that we are interested in is word embeddings, as they are able to not only learn new
representations of entities (words, items, resolvers) in a certain context, but it is also able to
learn and incorporate different relations between the entities, and correctly preserve these
from the raw data to the new vector space itself. This makes word embeddings stand out
in terms of representation learning techniques, as these relations can now more easily be
recognized by other machine learning methods, who can now use these for more complex
predictions.

2.3. Word Embeddings
Word Embeddings were originally created for Natural Language Processing (NLP) tasks and
is a subcategory of representation learning. The goal of word embeddings is to learn mean-
ingful representations of words (in the form of vectors) based on the word’s context. As
already briefly explained in Subsection 1.3.1, if the vectors of two words are close together
in the vector space, then this implies that the trained embedder considers these words to
be similar. Words with very different vectors are supposed to have very different meaning.
They learn the meaning of words based on the context they appear in (their relation to other
words). The entire method builds upon the assumption that similar words appear in similar
contexts. The surrounding words of a particular word are considered as that word’s context,
so if the context of two different words is similar, then they are put closely together in the
vector space.

While in the toy example described in Subsection 1.3.1 had dimensions which are very clear
(speed and size), the meaning of the dimensions learned by word embedders is not known.
While we don’t know what the individual dimensions mean, we do know that they hold
some form of significance, proven by a famous example in word embeddings: If you take the
embedding for "king", subtract the embedding for "man", add the embedding for "woman",
the closest embedding to this result is the embedding for "queen" [25]. This remarkably
simple example demonstrates that word embeddings are able to project words into a multi-
dimensional space while still maintaining the relations between the different elements.

2.3.1. Word2Vec
Word2Vec was introduced in mikolov et al. and was the basis for modern word embeddings.
It was the first widely used word embedding algorithm in Natural Language Processing, and
later also in countless other fields. Word2Vec is a self-supervisedmachine learning algorithm,
which means that it does not require any labelled data to train, but rather learns from the
contexts in which words appear.

With supervised learning all the training data is labelled, which is a very time intensive en-
deavor when the labelling is done by hand and the dataset is large. In the method proposed
by Mikolov et al., they are able to avoid this manual labelling by using the context (surround-
ing words) as labels for the target word. The underlying idea behind this is the Distributional
Hypothesis [34], which states that words with similar meaning appear in the same contexts,
and thus have the same words surrounding it. If we place a word into a vector space based on
all the words it’s related to (its context), then a word with similar meaning will have similar
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Figure 2.1: Depiction of the Word2Vec Model, which has an embedding and a prediction layer. v is the
vocabulary size, e is the embedding/dimension size

Word Index Embedding
King 1 0.4 -0.2
Queen 2 0.9 -0.2
Man 3 0.4 0.6

Table 2.1: Embeddings of example in 2.2

contexts, and thus will also be placed in a similar area in the vector space.

As can be seen in Figure 2.1, the Word2Vec model consists of two fully connected layers,
the embedding layer and the prediction layer. The embedding layer is a fully connected
layer where the input size is the size of the vocabulary and the output size is the number of
desired dimensions for the embeddings. Each word in the vocabulary is assigned an index
which corresponds to a node in the input. Since the layer is fully connected, each input node
is connected to all the nodes in the Hidden/Projection layer. The embedding of a particular
word is simply the weights of the corresponding input node to all the different hidden nodes
form.

When considering the simplified example of a trained word2vec model in Figure 2.2, the
embeddings of the different words are as shown in Table 2.1. The first layer has three nodes
(the size of the vocabulary) with each node inside it corresponding to a specific word. In
this case, node 1 represents "king", node 2 represents "queen" and node 3 represents "man".
The second layer is the projection layer which is the size of the chosen dimension size of the
inferred vectors. The last layer is the prediction layer, which assigns a probability to each
word in the vocabulary given the input.

Word2Vec is trained by first getting an entire sentence and selecting one target word. It then
collects all words within a certain distance of the target word, called the context words. Both
the context words as well as the target words are encoded into one-hot encoded vectors,
which are a type of vector where each index refers to a certain category or concept. If the
location for a specific category is set to 1, then that means that the category is present, oth-
erwise it is not present. For example if we use a vector which conveys which animals are in
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Figure 2.2: Example of Trained Word2Vec Model.

a picture, we might define the positions of the animals in the vector as [dog, cat, bird, horse,
cow]. If a picture has a bird in it, then that one-hot encoded vector is [0, 0, 1, 0, 0].

There are two similar ways of training a Word2Vec model, skip-gram and continuous bag-
of-words (CBOW). The skip-gram model tries to predict the context words based on the
target word. It accomplishes this by taking the one-hot encoded target word as input, and
attempts to predict the context words. When the input is passed, the one-hot encoded vector
propagates through the embedding layer and the prediction layer, and returns probability of
each word being the context word. Backpropagation is then applied, where the weights of
the neural network are altered in such a way to get the probabilities for the correct context
words as close to 1 as possible, while keeping all other context words as close to 0 as possible.
This process of selecting a target word and context words, predicting the context words
based on the target word and adjusting the weights accordingly is repeated for each word,
and eventually leads to a trained model where each word has a trained embedding.

CBOW works in a similar fashion, except that it predicts the target word based on the con-
text words. This is done by taking the context words and converting them to their current
vectors. These vectors are then combined, either by averaging or summing, at which point
the prediction layer then again outputs the probability of each word being the target word.
Backpropagation is then again applied to tune the weights, and this entire process is applied
to all words.

Once training is complete, the model now has an embedding for each word in the vocabu-
lary, which should accurately capture relationships between words. The actual vectors/em-
beddings are the weights inside the embedding layer, so in the example from Figure 2.2 the
embedding for "King" is [0.4, -0.2], "Queen" is [0.9, -0.2] and "Man" is [0.4, 0.6], as can also
be seen in Table 2.1.



3
Related Work

In this chapter we cover the related work of this thesis, which is divided into two sections.
The first section covers alternative embedding techniques in Section 3.1 which could be ap-
plicable to our use-case. The second part of this chapter we focus on previous work done on
the detection of malicious domain names.

3.1. Alternative Embedding Techniques
In this section we describe more embedding techniques that go beyond word2vec, such as
product embeddings and embeddings with metadata. We describe these as they are viable
alternative embedding techniques which could be useful in embedding domain names.

There are many different embedding techniques that exist, however in this section we only
cover Prod2Vec and Meta-Prod2Vec as this is what we use for our method. We briefly discuss
other embedding methods as well in Subsection 4.2.3, and the reasons why we chose not to
use them.

3.1.1. Product Embeddings
As the authors of the Prod2Vec paper [15] realized, Word2Vec is not only useful for mapping
words into a space by looking at the context they appear in, but that the same method can
also be applied to completely other contexts. The authors propose embedding Yahoo Mail
users based on the Products they have purchased to deliver better ads. One important thing
to note is the fact that the authors do not propose a new algorithm or method, but rather
propose a new use case for an existing method (Word2Vec).

In the case of Prod2Vec, each product represents a word in the Word2Vec algorithm, and
sentences are constructed based on which products a user bought together. In other words,
products are embedded based on what other products are frequently bought by the same
users. The premise for Word2Vec, namely that similar words appear in similar contexts,
remains the same for product embeddings. In this case the assumption is that similar products
appear in similar contexts (products in a shopping basket).

If we consider an imaginary electronics webshop shown in Table 3.1, the store can embed its
items based on the orders of its customers.

11
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Item ID Price Manufacturer Product
25 200-300 AMD CPU
76 300-400 Intel CPU
78 400-500 AMD GPU
52 500-600 Nvidia GPU
34 50-100 Razer Keyboard
83 100-200 HP Monitor
64 100-200 Asus Motherboard
92 50-100 MSI Motherboard
3 0-50 Logitech Mouse
32 50-100 CoolerMaster PSU
31 50-100 Corsair RAM
14 100-200 Gskill RAM
85 50-100 Samsung SSD
...

...
...

...

Table 3.1: Example list of toy web shop

If we then construct sentences based on the product ID in each order, we get sentences similar
to the ones shown below:

• Order 1: "Item85 Item52 Item76 Item64 Item14"

• Order 2: "Item85 Item3 Item83 Item34"

• Order 3: "Item78 Item25 Item92 Item31 Item32"

• Order 4: "Item64 Item76"

Each word in the sentences represents the ID of a product shown in Table 3.1. These sen-
tences are then fed to Word2Vec as training data, and it is able to derive information about
the products solely based on what other products are frequently bought together. Given
enough data, the model is able to accurately place these items in an embedding space, such
that similar products (like the same product type) are situated close to one another.

Prod2Vec itself is not a new machine learning technique, it is simply a different use-case for
Word2Vec. Prod2Vec usesWord2Vec not for embedding and capturing the meaning of words,
but rather embedding and capturing the meaning of products/items, making the recommen-
dation of products trivial. The reason we are interested in this use-case, namely embedding
products for recommendations, is because it is very similar to what we want to a achieve. In-
stead of recommending products which are similar to one another, we "recommend" newly
registered malicious domains. The underlying methods are the same, with Word2Vec being
shown to not only work in the context of embedding words, but also more abstract concepts
such as items. This suggests Word2Vec would also be able to embed things different than
items, such as domain names.

3.1.2. Meta-Prod2Vec
This paper expands upon the Prod2Vec idea by including Metadata of products during train-
ing of the embedding model [45]. This is done to improve upon the cold start problem as



3.1. Alternative Embedding Techniques 13

well as the overall embeddings of the products by giving additional information about the
product to the embedding algorithm.

In the paper the authors conducted some experiments to compare the normal Prod2Vec
against their Meta-Prod2Vec. They used the 30Music dataset [43] to embed songs based on
their ID and Metadata (such as artist information). They found that this did improve perfor-
mance for cold-start traffic, namely songs that do not appear very often and have inaccurate
embeddings because of it.

Meta-Prod2Vec works by adding additional metadata to a sentence of the items. So if we
again take the previous example of an electronics webshop, instead of the input to the em-
bedding module being just a list of items, it is now a list of items and their metadata. If we
expand the sentences from Subsection 3.1.1, we get the following:

• Order 1: Item85 Price=50-100 Manufacturer=Samsung Product=SSD
Item52 Price=500-600 Manufacturer=Nvidia Product=GPU
Item76 Price=300-400 Manufacturer=Intel Product=CPU Item64
Price=100-200 Manufacturer=Asus Product=Motherboard
Item14 Price=100-200 Manufacturer=Gskill Product=RAM

• Order 2: Item85 Price=50-100 Manufacturer=Samsung Product=SSD
Item3 Price=0-50 Manufacturer=Logitech Product=Mouse
Item83 Price=100-200 Manufacturer=HP Product=Monitor
Item34 Price=50-100 Manufacturer=Razer Product=Keyboard

• Order 3: Item78 Price=400-500 Manufacturer=AMD Product=GPU
Item25 Price=200-300 Manufacturer=AMD Product=CPU
Item92 Price=50-100 Manufacturer=MSI Product=Motherboard
Item31 Price=50-100 Manufacturer=Corsair Product=RAM
Item32 Price=50-100 Manufacturer=CoolerMaster Product=PSU

• Order 4: Item64 Price=100-200 Manufacturer=Asus Prod-
uct=Motherboard Item76 Price=300-400 Manufacturer=Intel
Product=CPU

All elements of the same order are still seen as one sentence for training, the metadata in-
serted into the sentences is treated the same as all other "words"/items in the sentences.
The embedding algorithm does not distinguish these, and simply sees them as extra words,
which means that the different metadata values are also embedded. As an example, both
"Price=50-100" and "Price=100-200" are words which have a corresponding embedding/vec-
tor. This serves to give extra context to the items listed in the orders, which helps mitigate
the cold-start problem.

Since our goal is to detect newly registeredmalicious domains, it is expected that the domains
have limited amount of information available. In other words, our use-case also faces the
cold-start problem, which Meta-Prod2Vec is supposed to improve. For this reason we believe
Meta-Prod2Vec to be a viable embedding method.

3.1.3. Document Embeddings
A document embedder such as Doc2Vec [22] has the goal of also training representations of
a document, rather only the embeddings of words. A document can be anything from an
article to a paragraph or a simple sentence, with the goal of the document embedding being
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to capture the overall meaning of the document.

There are two different ways in which Document Embeddings can be trained, with the first
one being the simplest, Distributed Bag of Words (DBOW). The goal during training for this
approach is to predict randomly sampled words from a document based on the document’s
ID.

The second technique is the distributed memory model, which is comparable to Word2Vec’s
CBOW but has the document ID as additional input. It predicts the target word based on the
context words as well as the document itself. During training the document ID is used to get
the document vector, which is combined alongside the context words. Like with Word2Vec’s
CBOW, the combined vector is then passed through the prediction layer, which outputs a
prediction for the target word, at which point we apply backpropagation. Since the document
vector and the context words are combined before the prediction step, both are encoded into
the same embedding space.

In our use-case of embedding domain names based on their DNS queries, the domain name
can be seen as the document, with the resolvers querying the embedder as the words belong-
ing to the document.

3.2. Malicious Domain Detection
There exists an extensive corpus of methods aimed at detecting malicious domains, each
employing unique approaches. Zhauniarovich et al. [49] provide a comprehensive survey
of these methods, categorizing them based on the type of data, detection algorithms, and
evaluation techniques used.

Antonakakis et al. [2] introduce Notos, a dynamic reputation system that identifies malicious
domains using a variety of DNS-based features. These features include statistical data about
the network and zones of the IP addresses associated with the domain, as well as lexical
characteristics of the domain name itself. Notos models legitimate and malicious domains to
generate reputation scores for new domains, achieving a high true positive rate of 96.8% and
a low false positive rate of 0.38% in evaluations on a large ISP’s network.

Hao et al. [18] propose PREDATOR, a system focused on detecting spam domains at the
point of domain registration. By analyzing the bursty nature of domain registrations and
the similarity of domains registered together, PREDATOR predicts the maliciousness of new
domains. This method, which leverages information about current and past registrations,
achieved a recall of 70% with a false positive rate of less than 0.35%.

Choi and Lee [7] present BotGAD, a mechanism for detecting botnets by identifying group
activities in DNS traffic. BotGAD leverages the coordinated nature of botnet operations to
detect malicious activities in real-time. Using error correction, cluster analysis, and hypoth-
esis testing, BotGAD maintains a detection rate of over 95% with a false positive rate below
0.4%. However, its effectiveness is limited to DNS-based botnets and can be impacted by bot-
nets employing techniques like IP churn. Employing malicious domain detection on the DNS
query side makes it much harder for attackers to evade detection, as they cannot influence
traffic going towards their domain that doesn’t come from them.

FluxBuster is another significant contribution, focusing on detectingmalicious flux networks
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by passively analyzing large-scale DNS traffic from recursive DNS servers. Over a five-month
period, FluxBuster achieved a detection rate of 99.3% with a false positive rate of 0.15%. It ef-
fectively identified threats days or weeks before they appeared on public blacklists, although
it relies heavily on observed user queries and sufficient IP data collection. The fact that Flux-
Buster is able to identify clusters of malicious flux networks using DNS traffic suggests that
detecting malicious domains based on their resolver traffic is also feasible.

Recent advancements have continued to build upon these foundational works, addressing
some of their limitations and introducing new techniques. For example, Mahdavifar et al. [24]
present a method that selects features and trains machine learning models using enhanced
DNS traffic data. This approach incorporates statistical, lexical, and third-party features,
achieving an F1-score and precision of 99.4% on a large dataset. However, obtaining third-
party features for newly registered domains remains a challenge.

He et al. [19] developed a graph-based approach utilizing passive A records to construct do-
main relationship graphs, effectively differentiating between malicious and benign domains.
By employing an altered DeepWalk algorithm, they capture relationships within the graph,
achieving a recall of 94.3% and a precision of 93.8%. While similar to our proposed approach
in capturing domain relationships, their focus on A records contrasts with our emphasis on
DNS query traffic. Moreover, their dataset’s 50/50 split between malicious and benign do-
mains does not reflect the real-world ratio, posing challenges in generalizing their findings.
This paper suggests that using embeddings on DNS data is a valid approach for detecting
malicious domains.

Where ourmethod differs from the other approaches is the fact that we apply an Embedder on
the DNS query data itself to embed the domains, which are later classified. While many of the
previously mentioned papers are similar to our approach, such as the embedding of domains
based on the related IP addresses of domains [19], the detection of maliciously registered
domains [18, 24], and the detection of malicious domains based on DNS query data [2, 30, 24,
19], we make use of a novel approach to detect malicious domains.

There is one other paper which has a similar approach, namely the detection of malicious
C&C domains using word embeddings, which is covered in the following subsection.

3.2.1. Malicious domain detection using word embeddings
Word embeddings do not have to exclusively be used in the context of Natural Language
Processing. As Yamada et al. [47] shows, Word2Vec can also be used on DNS queries to help
identify malicious domains that belong to a command & control (C&C) server. These servers
give commands to devices controlled by malicious software, the DNS requests they get have
a specific query pattern to them which Word2Vec is able to extract into its vector represen-
tation of the domains. Now that the domains can be projected into an n-dimensional space,
they can be compared to other domains. The author’s approach to determining whether
given domains are malicious is by checking whether the domain is close to any known ma-
licious domain. If it is, then that domain is flagged.

We expand upon this idea, as we do not only consider C&C domains, but any type of mali-
cious domain that is reported. This significantly increases the number of domains that are
considered malicious. On top of this we limit our scope to newly registered domains, instead
of all possible domains. In our approach we also explore various machine learning methods
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and hyperparameters to find the optimal classification model.



4
Embedding DNS Query Data

In this chapter we go over the different embedding methods we have tried out. More specif-
ically, we describe how the DNS data is used for embeddings, what embedding methods are
feasible for domain embeddings, and some tests on the performance of these embeddings.

4.1. DNS Data
Before we can do any sort of embedding, we need to know which DNS queries to consider in
the first place. Sincewe consider any queries thatwere reportedwithin 30 days of registration
as malicious, all domain names reported after are considered benign in our use case. One
important thing to keep in mind is the fact that the moment a malicious domain is reported
its traffic pattern changes. This is because many different parties attempt to connect to this
domain for various reasons, such as collecting their data. Since our goal is to detect domains
before Netcraft, it is very important to discard any queries that are sent after a malicious
domain has been reported, as these might give the embedder and classifer information it
would not have in a deployment scenario.

4.1.1. Number of queries
The first thing we need to figure out is how many queries we want to use for the embed-
ding. We do this by selecting a timeframe in which we collect queries to a domain. This
timeframe starts at the time of registration, and lasts up until a certain amount of days after
the registration.

In order to determine this timeframe we look at the average amount of queries to malicious
and benign domains for each day after registration, as can be seen in Figure 4.1. It shows
that the amount of queries to maliciously registered domains quickly drops off after just the
first day of registration. This can be explained by the fact that many malicious domains are
caught within the first few days of registration, as can be seen in Figure 4.2. While themedian
amount of queries sent to malicious domains is 0 after 5 days, the mean amount of queries is
still around 500 queries a day. This shows that a minority of malicious domains are still able
to operate at 5 days after registration and beyond.

Although most maliciously registered domain names do not receive any queries after 5 days
of registration, we chose to collect all query data up to 10 days after registration. This pro-
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Figure 4.1: Average number of DNS queries to domains per day after registration. For malicious domains,
queries are only counted if they are sent before the domain has been reported.

Figure 4.2: Distribution of the report delay (time between registration and report) of malicious domains.

vides a significant buffer for domainswhich stayed undetected for over 5 days and still receive
queries, while still being a manageable amount of data in terms of processing and training.
An important thing to note is that this does not mean that the classifier waits for 10 days
before making a prediction.

4.2. Embedding Techniques
The first step in implementing our method for detecting malicious domains is by finding a
suitable embedding method. There are many different possible embedding algorithms that
have been developed over the years [25, 15, 22].

The first embedding algorithm we look at is Word2Vec [25], as this is the first and most
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commonly used embedding technique in related works.

4.2.1. Word2Vec
Word2Vec is able to learn representations of words based on the context that those words
appear in. It is able to capture relationships between words and project these into a latent
space.

If we were to apply Word2Vec to DNS query data, then our words would not be words from
a natural language, but rather a resolver’s IP address. So instead of a sentence being made up
of words, it is instead made up of resolver’s IP addresses. We create these sentences based on
domains, meaning that for each domainname we collect all the resolvers that have queried
that domain. This allows us to embed resolvers based on their querying behaviour.

This approach however only gives us embeddings for words, i.e. the resolvers, what we’re
actually interested in is embeddings of domains. One possible solution to this is what Spotify
did to embed listening sessions based on song embeddings, namely taking the average em-
bedding of all the songs in a listening session [16]. While the goal of Spotify is not directly
related to our objectives, the approach is very similar. Spotify trained embeddings of all their
songs based on their appearance in user-made playlists. The assumption here is that similar
songs are going to be in similar playlists. Using these song embeddings Spotify then took
the average of all of them in order to get an approximation of the current listening session,
so it can suggest songs that are similar to whatever the user is currently listening to.

One way to test the approach of averaging resolver embeddings to obtain a domain embed-
ding is by comparing their cosine distances. Since embeddings of similar domains should
be closer together than embeddings of completely different domains, we can generate two
embeddings for the same domain as well as an embedding for a random domain. If this ap-
proach works, then the distance between the two embeddings for the same domain should
be significantly lower than distance of two embeddings from random domains.

To run this experiment we go over each domain and collect two different sets of resolvers
that have queried that specific domain. We then also collect a set of resolvers for a different
random domain. We average the embeddings of these three sets to get the 2 embeddings of
the same domain and one embedding of the random domain. We calculate the cosine distance
between the two embeddings of the same domain, as well as the cosine distance between the
embeddings of the 2 different embeddings. This process is repeated for all domains in the
dataset, with the distances being plotted in Figure 4.3.

Figure 4.3 depicts the two distributions of the test that we just described. There is a clear
difference between the two distributions, which means that the average of resolver embed-
dings could be a viable way of embedding domains. Despite this, the distributions do not
seem very consistent, as they do not resemble a normal distribution at all. Additionally there
is a significant overlap between the distribution for the distance of the same domain and the
distribution for the distance of the different domain.

This is why we also look into Document Vectors for the embedding of domains, as covered
in the next section.
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Figure 4.3: Distribution of distances between averaged word vectors for the same and different domains.

4.2.2. Doc2Vec
Instead of averaging the vectors of resolvers to get embeddings of the domains, we can train a
Doc2Vecmodel, as this is able simultaneously train both the resolver and domain embeddings.
The Doc2Vec model is able to learn the prevalent characteristics of each document, which
can serve as a form of summary. The document embeddings can be trained in a different
vector space from the word embeddings, meaning that different features and relations can
be extracted and saved about documents.

As is also the case with our Word2Vec approach, in this scenario the resolver IPs that query
a specific domain are aggregated into a list/sentence. In the case of Doc2Vec, we also provide
a document ID, which in this case is the domain name. This allows the embedder to learn
both embeddings of the resolvers as well as the embeddings of the domains.

However simply having embeddings for domains that were trained is not enough for detect-
ing newly registered malicious domains, since our goal is to embed new domains based on
queries they’ve received. Just having trained embeddings of existing domains is in this case
insufficient, as we need a way to generate these embeddings for new domains.

Gensim’s Doc2Vec has a method which is able to accomplish just this, infer vector, as it can
generate embeddings based of unseen documents given any sentence. This means that even
if it has never seen a domain before, we just have to pass a list of resolvers that have queried
a specific domain and the trained Doc2Vec model generates an embedding of it.

In practice, this allows us to collect queries all queries for a specific domain and put them in
a list. Doc2Vec’s infer vector method is then applied to this list of resolvers, which gives us
an approximate embedding of the domain. This embedding can then be fed to a classifier to
determine whether this domain is malicious or not.
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Infer Vector Performance
In this section we evaluate whether infer_vector() is actually a suitable method for embedding
newly registered domains. We do this by running a similar test as in Subsection 4.2.1. Mean-
ing that we train a Doc2Vecmodel on the DNS query data and get three different embeddings:
the trained document embeddings of a domain, an embedding inferred from queries to the
same domain, and an embedding inferred from queries to a different domain. We then calcu-
late the distance between the learned domain name embedding and the inferred embedding
of that same domain name. Additionally we also take the trained embedding of a domain
and calculate its distance to the inferred vector of a different domain. The cosine distance
between the trained and inferred embedding for the same domain should be smaller than
the cosine distance between trained and inferred embedding of different domains. If this the
case, then this implies that infer_vector() is able to generate good embeddings.

Figure 4.4: Distribution of distances between document and inferred vector for the same and different
domains.

The results of this test are shown in Figure 4.4, which shows that there is a clear distinction
between the two distributions; the inferred vector of a same domain is much closer to the
trained embedding of that domain than the inferred vector of a random domain.

This substantiates that the Doc2Vec infer_vector() method works, as it is able to differentiate
between inferred vectors of the same and different domains, and it does so more reliably than
simply averaging resolver embeddings.

There is one drawback of this approach related to the classifier that will be using the embed-
dings to make predictions on the maliciousness of the domain names. In machine learning,
it is important to get the training scenario as close to the deployment scenario as possible,
which is is not yet the case here.

For this reason, we decide to generate inferred vectors for each domain that the classifier will
train on, instead of training on the document embeddings. We do this since the prediction
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is completed on inferred vectors, so in order to make the training scenario resemble this
as much as possible, we also train the classifier on inferred vectors of domains. Another
advantage of this that the timeframes of the embeddings are the same. The trained document
embeddings are obtained over the entire training data of the embedder (which can span up
to 10 days after registration). The classifier however only uses the inferred embedding of a
certain amount of queries to make a prediction in order to get the most consistent training
and inference performance. By using the inferred vectors of domains as training data for the
classifier instead of the document vectors, we ensure that the same method and timeframe
are used of the training and testing/inference data, ensuring the training and deployment
circumstances are as close as possible.

We verify that this approach of using the inferred vectors of domains as training data for the
classifier works by again comparing the distances between embeddings of the same and of
different domains. For this test we compare the distances of two inferred vectors of the same
domain (generated from two separate sets of resolver IP addresses which have queried the
same domain) with the distance of inferred vectors between two different domains.

This ensures that inferred_vector() does not simply generate similar vectors for all domains,
but that the inferred vectors are domain-specific. We plot the distances between the inferred
vectors of the same domaind and the inferred vectors of different domains inFigure 4.5. The
figure shows a clear distinction between the distances of inferred vectors for the same domain
and inferred vectors of different domains. While the distributions in Figure 4.4 seem better
visually, the difference is not enough to warrant using document embeddings to train the
classifier, as this cause the training data of the classifier to be significantly different from the
production data. It is for this reason that we choose to use the inferred vectors of domains
as training data for the classifier.

Figure 4.5: Distribution of distances between two inferred vectors of the same and different domains.
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4.2.3. Other methods that were considered
Besides the main methods listed above, we also considered other possible ways of embedding
domains.

The first option we considered was building a custom implementation of Word2Vec which
would train on DNS Query data. We implemented the skip-gram model architecture in Py-
torch, however this did not function properly and was also took a considerable amount of
time to train, much longer than the gensim implementation, which is why we ultimately
decided against using a custom implementation.

Other implementations that we considered, as well as the criteria they meet and do not meet,
are shown in Table 4.1.

Embedding Method Implementation Maintained Has Doc Vecs

Word2Vec [25] Gensim [33, 32] Yes
Indra [35, 21] No No

GloVe [29] Indra [35, 21] No No
fastText [5] Github Repo [12] Yes No
Doc2Vec [22] Gensim [33, 32] Yes Yes
StarSpace [46] Github Repo [11] No Yes

flair [1] Github Repo [13] Yes Yes

Table 4.1: Table with various embedding techniques and their benefits and drawbacks

We ultimately choose to use gensim’s Doc2Vec, as this is the only embedding method which
has a maintained implementation and has document vectors. Flair embeddings [1] also
falls under this category, however its main contribution is using character-level embeddings,
rather thanword embeddings. In our use case of IP addresses, thiswould be counter-productive,
as the individual characters in IP addresses do not have any meaning, it is only the entirety
of the IP address which determines its behavior. A single changed number in the IP address
can refer to an entirely different device with completely different properties.

4.3. Metadata
We experimented with including metadata about DNS queries in the training of our embed-
ding model, as was introduced by [45] to overcome the cold-start problem that occurs if very
little information of a subject is available. When we apply this to our use case, then we would
not only use the resolver IP addresses to create sentences, but also other query-specific in-
formation. One important step in accomplishing this is determining which metadata should
be included, which is covered in the next subsection.

4.3.1. What Metadata?
The database where we get all the query data from is Entrada [37], which stores over 60
different attributes about DNS Queries received by SIDN. Using all of these features as meta-
data when embedding domains is not feasible, which is why we have to select some features
which are likely to help improve the embedding of domains.

We analysed the different attributes that Entrada stores and selected the following as poten-
tial candidates for metadata:
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• ipv: IP version
• time: unix timestamp
• number of labels: number of labels in a domainname (ex: "ewi.tudelft.nl" has

3)
• qtype: query type
• country: country location of resolver
• asn: autonomous system number of resolver

The query time has to be converted to categorical data, as the embedder cannot work with
numerical data. A simple and effective way this can be done is by splitting it up, namely
into weekday, hour and minute. This means that the one unix time stamp is converted into
3 metadata points, the weekday, hour and minute. Other metrics such as the day, month
and even day could have been included, however we want to keep the amount of metadata
low, and assessed that these would likely not contribute much additional information to the
embeddings that could help the classifier.

We can now do an analysis of the different metadata attributes to determine whether they
could be useful to the embedder and classifier to better detect malicious domains. We down-
load all queries from February 2024 sent up to 10 days after registration of a domain. Using
this data we then analyze the above attributes.

Country
We first plot the share of queries to malicious domains per country. We do this by collecting
all queries per country, sum up the amount of queries to malicious domains and divide by
the number of total queries.

More specifically, we simply calculate the ratio of queries to malicious domains compared to
all queries per country, which gives us Figure 4.6.

There are a few countries that stand out, namely Lesotho, Argentina, South Africa, Egypt,
Côte d’Ivoire and Nigeria. Lesotho has the highest percentage with 33%, however only 6
queries originated from there, so this comparison is not very fair. On the other hand Ar-
gentina and South Africa have 23% and 19%, with a total amount of 42 thousand and 56
thousand queries respectively over the course of a month. This suggests that the country of
origin of a query can be a useful indicator in whether a domain is malicious or not, which is
why we choose to include it in the metadata for the embedder.

IPV, Labels, QType
Next we compare the distributions of IP version, number of labels, qtype and opcode values
for benign and malicious domains. These distributions are further split into buckets of days
from 0 to 10 days after registration. We accomplish this by first collecting all queries and
splitting them up into buckets depending on howmany days after registration theywere sent.
This is then further split into queries to malicious and benign domains. Then we generate
histograms of the values for the IP version, number of labels, query type and operation code.
This is shown in Figure 4.7, and if there are any significant differences in the distributions
then this means that the attribute could be a helpful indicator in determiningwhether queries
are being sent to a malicious domain or not

However, these attributes do not seem to significantly deviate between benign and malicious
domains at any moment in time, which suggests that these metrics are not very likely to
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Figure 4.6: Ratio of queries to malicious domains per country.

(a) ipv (b) labels

(c) qtype

Figure 4.7: Distribution of various metadata attribute values for malicious and benign domains for each day
after registration. Values are in percentage
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Figure 4.8: Normalized distribution of number of queries per time of day for benign and maliciously
registered domains.

provide significant value to the embedder.

Time
Since the embedder cannot work with continuous values, the query’s time has to be dis-
cretized. An easy way to do this is by splitting up the time into multiple attributes: minute,
hour and week day. We visualize whether the time of queries is a good indicator of a do-
main’s maliciousness by plotting the number of queries sent to malicious and benign do-
mains throughout the day. We do this by collecting all queries sent within 10 days after
a domain’s registration. We then plot the distribution of these times for both benign and
malicious domains on a circular histogram, as shown in Figure 4.8.

The plot displays the normalized amount of queries sent to maliciously registered and benign
domains per time of day. These values are the average of 11 days of queries after a domain’s
registration (first day until the 10th included), with a total of 21,740 benign and 33 malicious
domains. Both distributions spike around the 1am mark, which is likely related to the fact
that the time we use here is converted to CET, would be midnight in UTC in February (when
the data was collected). There is likely a lot of automated scanning operations which query
domains at the start of every day which cause this large spike. There are not any direct
indications that time might be a good attribute when it comes to maliciousness of domains.

ASN
Lastly we consider the Autonomous System Number (ASN) of the resolver as possible meta-
data for our embedder. Just like the country, more information of the origin of the query
might prove useful to the embedder and thus the classifier in determining malicious domains.
However there is no good way of displaying and comparing which ASNs are more likely to
query malicious domains as the amount of possible Autonomous System Numbers are very
large.
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Selection
When looking at the different distributions and values of the metadata chosen above, we
conclude that the metadata which is most likely to aid the embedder is the resolver’s country
as well as its ASN. That being said, there is a chance that the other metadata could provide
important information to the embedder, information that is not directly perceivable from
these visualizations. This is why we choose to test two different metadata configurations
when examining the performance of the different hyperparameters in ??. One configuration
only has the country and ASN number, while the second configuration has all the above-
mentioned metadata.



5
Classifying Malicious Domain

Embeddings

In this chapterwe describe and evaluate the classifierwhichwill ultimately detectmaliciously
registered domains using their embeddings. In order to do this, we first determine which
classifiers. Once we have these selected, we run the first experiments using the embedder
and classifier. We experiment with different hyperparameters for both the embedder and the
classifier, and assess which lead to the best prediction results of the classifier.

5.1. Classifiers
We choose to test on three different classifiers in order to have a balanced picture of the
performance of classifying malicious domain names based on their embedding. We choose
to test the following three classifiers: K-Nearest Neighbors, Logistic Regression and Random
Forest. These three methods are very common and powerful classifying methods.

Random Forest is a collection of decision trees, which at it’s core is just a set of many con-
ditions (if/else statements). Decision trees are commonly used in machine learning because
of their simplicity, and can be very powerful when combined with multiple other decision
trees to form a Random Forest[20].

K-Nearest Neighbors (KNN) is a classification algorithm which classifies new entries accord-
ing to which class has the nearest k neighbors to the existing "training" data [8]. For example
if k is 2 and an entry is given for prediction, then KNN’s prediction is whichever class has
the closest 2 neighbors. KNN does not need to be trained, the entries and classes just have
to be initialized. This makes it a simple and fast classification algorithm.

Logistic Regression [9] is a binary classification algorithm that predicts one of two possible
outcomes. It uses the logistic (sigmoid) function to map the input features into a probability
between 0 and 1. Logistic Regression is simple, interpretable, and efficient. Unlike more
complex models, it is relatively quick to train and does not require extensive computational
resources.

Now that we know which classifiers to use, we can determine which hyperparameters we
want to test to achieve the best performance. Since we are using an embedder as well as a

28
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classifier to make predictions, we also need to fine-tune two sets of hyperparameters to get
the best results.

In order to find the best performing hyperparameters, we make a selection of possible values
for each hyperparameter. Combinations of these are then used to train the embedder and
the 3 classifiers, where the performance of the classifier being a proxy for the performance
of the hyperparameters.

5.1.1. Classifier Evaluation
The most common metrics for evaluating models are the precision and recall. The precision
of a model is the amount of correctly classified instances of all the instances marked by the
classifier and the recall is the amount of correctly classified instances out of all the actual
positive instances. The precision and recall of a model depend on the threshold of the clas-
sifier, as the threshold decreases, the precision also increases (because the model becomes
less strict on what counts as positive) and the recall increases (because a larger amount of
positive instances are flagged by the classifier. More specifically, the precision and recall of
a model are inversely correlated, and depend on the chosen threshold.

In order to more accurately represent the actual performance of a machine learning model,
there are other metrics which analyze the performance of the model at many different thresh-
old values. One of these is the Receiver-Operator Characteristic (ROC) curve, which mea-
sures the True Positive and False Positive rate across many different thresholds. For each
threshold, the True Positive and False Positive rates are recorded and plotted, resulting in
the ROC curve. This curve can then be summarized by calculating its AUC (Area Under
Curve), which results in a number from 0 to 1 which is able to capture the performance of
the classifier over its different thresholds.

A drawback of the ROC is that it misrepresents the performance of classifiers on highly im-
balanced datasets with very few positive values. This is why our metric of choice is the
average precision (AP), which summarizes the precision-recall curve and is still able to ac-
curately depict the performance of a model for highly imbalanced data. For the AP we plot
the precision and recall for many different thresholds, which forms a curve. Calculating the
auc (area under curve) for the precision-recall curve gives us the average precision, which is
again a number between 0 and 1.

For each set of hyperparameter combinations, we generate an embedding model and a clas-
sifier using those settings. The classifier is then tested and its AP is recorded. We choose
the hyperparameters for the final classifier based on which hyperparameters have the best
average precision in this section.

5.2. Testing Hyperparameters
In order to create our training and test dataset, we first need to select which domains to
collect queries from, since we are only interested in queries from newly registered domains.
For these hyperparameter tests, unless otherwise specified, we train and test on one month
worth of query data.

We decide to sample 200.000 benign domains registered over an entire year (May 7 2023 -
May 7 2024), as well as use all 2693 malicious domains registered from 2022 onward. We
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do not use all registrations within the given time frame as this would extend training and
testing times, which is not desirable when we need to train many different models.

More specifically, for all hyperparameter tests in this section, we use queries sent to domain
names registered in March 2024, unless otherwise specified. This leaves us with exactly
16,000 benign domains and 135 malicious domains. We apply 5-fold cross-validation, which
means that data point (both benign and malicious domains) appears exactly once in the test
set. This means that there are 5 different classifiers trained, each having an entirely differ-
ent test set from the others. We do this to ensure that we have an accurate picture of the
classifier’s performance across all data.

Oncewe have the domains wewant to train on, we can generate the sentences (sets of queries
to a domain) which will be used to train the embedder. We select all queries that fall within 10
days of a domain’s registration and belong to domains in our registration dataset mentioned
above.

Using these queries we can now generate one or multiple sentences per domain, either with
or without metadata. These sentences are then used to train the embedder. For each domain
we get the first sentence and use the trained embedder to infer an embedding vector. These
vectors represent the embedding of the domain, and are used to train the classifier. More
specifically, we split the existing domain names into a train and test dataset, with the embed-
dings of the domains in the train dataset being used to train the classifier, and the domains in
the test dataset being used to test the classifier. Finally, we calculate the classifier’s average
precision (AP) and store it so the various hyperparameters can be compared.

5.2.1. Embedder Hyperparameters
In this section we explore the performance of the hyperparameters related to the embedder.
Since our ultimate goal is to create a functioning model which is able to classify newly regis-
tered malicious domains, we assess the performance of the hyperparameters by the average
precision of the classifier which was trained on the embeddings. The Doc2Vec hyperparam-
eters we examine are the following:

• Embedding Dimension: Number of dimensions of the embedded vector
• Sentence Length: Number of queries to use during training
• Using Metadata: Whether we want to include other query metadata (such as

time, IP version, ...) for the embedder besides the resolver
IP address.

• Number of Epochs: Amount of times we go over the training data. After Epoch
0 we have gone over the training data once.

• Distributed Memory (dm): Whether to use Doc2Vec’s distributed memory for train-
ing, or DBOW. When dm is true, the document vectors are
trained in the same vector space as the word vectors. If it
is set to false, document vectors and word vectors are in
different vector spaces.

• First sentence only: Whether or not to only train embedder with the first sen-
tence (set of queries)

These 6 hyperparameters can have many different values, we choose a wide range of them
in order to ensure we find the optimal ones:
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• Embedding Dimension: 10, 25, 50, 100, 200, 250, 300, 500, 1.000
• Sentence Length: 5, 10, 25, 50, 100, 250, 500, 1000, 2000, 5000, 10000, 20000,

50000
• Using Metadata: None, [Country, ASN], All ([ipv, time, num labels, qtype,

country, asn])
• Number of Epochs: 0, 1, 2, 3, 4, 5, 6
• Distributed Memory: True, False
• First sentence only: True, False

In order to properly test the impact of the hyperparameters on the performance, we use de-
fault hyperparameters which are used across all tests. This means that if we test for example
the use of distributedmemory, we generate 2 embedders with the same default settings, apart
from dm, which is once true and once false. We have selected the following values as the
default hyperparameters.

• Embedding Dimension: 50
• Sentence Length: 1000
• Using Metadata: None
• Number of Epochs: 3
• Distributed Memory: False
• First sentence only: False

Now that we have all possible hyperparameter values as well as the default hyperparameters,
we can start training the embedder and classifiers.

5.2.2. Embedding Hyperparameter Results
The performance of the three different classifiers for different hyperparameters is shown in
Figure 5.1. It depicts the average precision of the three different classifiers, which are using
embedders trained on the 6 different embedding hyperparameters.

Dimension
When analyzing Figure 5.1a, we can see that the best performance for the dimension is 250
using logistic regression. The surrounding dimensions of 200 and 300 do not seem to perform
as well. While 100 does perform almost as well as 250 for the logistic regression and KNN,
the improve performance for 250 is enough to warrant using that instead of 100.

Sentence Length
For Figure 5.1b, the best performance is at the largest sentence length, which doesmake sense.
The more information the classifier has, the better its prediction will be. The drawback of
choosing a really high sentence length however, is that it will take much longer to reach
this point. Our goal is to detect maliciously registered domains before Netcraft, however if
we wait until we reach 50.000 queries, this is very unlikely to happen. There is a trade-off
between the number of queries we use to make a prediction, and the amount of time it takes
for that prediction.

In order to better gauge which sentence length is better, we analyze how many maliciously
registered domains will have already been detected after a certain amount of queries. We
show this in Figure 5.2, where the cumulative amount of queries is depicted per malicious
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Figure 5.1: Classifier performance for different embedding hyperparameters
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domain. This shows us the percentage of malicious domains which have been reported after
each step in the number of queries.

For example if we choose to predict the maliciousness of a domain after 100 queries, if we
extend this line up to our plotted cumulative curve, we get to a y value of 0.1193. This means
that 11.93% of maliciously registered domains were reported before reaching 100 queries. We
want to balance the performance of the classifier (average precision) with the percentage of
malicious domainnames which can be

We chose to depict the most ideal sentence lengths for the logistic regression classifier in
terms of average precision in Figure 5.1b, namely 100, 2.000 and 10.000. We can see that the
average precision for the classifier using 100 queries is 0.25, with 11.93% of domainnames
being reported before. While this means that the classifier would still be in time to predict
88.07% of of the maliciously registered domains, we would ideally want a higher average
precision. When we increase the amount of queries to 2,000, we also increase the average
precision to 0.36, with 27.98% of domains being reported before the classifier is able to do so.
This still leaves over two thirds of malicious domain names, while significantly increasing
the average precision. If we further increase the number of queries necessary to make a pre-
diction to 10,000, the AP again increase, this time to 0.46. However, this means the classifier
is too late for over half the malicious domains.

In this case the middle value of 2,000 queries seems to be the most optimal, since it has a
relatively high average precision, while still being soon enough to evaluate over two thirds
of the malicious domains.
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Figure 5.2: Cumulative Distribution of number of queries to malicious domains. The average precision of the
logistic regression classifier is marked for 100, 2.000 and 10.000 queries
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Metadata
Since we are also interested in the performance of metadata on the embeddings of the do-
mains, we compare no metadata with the country and ASN, as well as all metadata that we
selected in Section 4.3 (IPV, Time, Number of Labels, Qtype, Country, ASN). The performance
of the different metadata configurations is shown in Figure 5.1c and suggests that there is
no real benefit to adding metadata for logistic regression and KNN, while adding metadata
seems to actively worsen the result of the Random Forest. For this reason we choose to not
include any other information about the queries for the embedder besides just the set of
resolver IP addresses.

Number of Epochs
Another hyperparameter we analyze is the optimal number of epochs for the embedder,
which we have tested from 1 to 7 in Figure 5.1d. The best performing KNN and Random
Forest are for some reason after 2 Epochs. The overall best performing classifier is logistic
regression with any epoch of 4 or over. We choose an epoch of 5 to ensure we truly go over
all data often enough, especially when we later increase the amount of training data by using
all available domainnames and training over a longer date range.

Distributed Memory
We also explore the performance of the classifiers when the embedder is trained with and
without distributed memory, see Figure 5.1e. When distributed memory is set to true, the
document (domain name) embeddings are put into the same vectors space as the word em-
beddings (resolvers). The graph shows a very clear difference in performance across all three
classifiers when training the embedder with and without dm. The classifiers perform signif-
icantly better when dm is not used.

First Sentence Only
We now look at the final embedding hyperparameter that we have explored, whether or not
to only use the first sentence of a domain to train the embeddings. In other words, do we only
use the first 1.000 queries to each domain to each embedder, or do we use all of the available
queries? When analyzing the results of this experiment in Figure 5.1f, we can see that this
does not seem to have an impact on the Random forest, but it does change for the KNN and
Logistic Regression. While only using the first sentence does seem to be better for the KNN,
using all queries works better for the Logistic Regression, which also performs better than
the KNN. For this reason we choose to train the embedder using all available queries.

5.2.3. Classifier Hyperparameters
Besides embedding hyperparameters there are also hyperparameters for the classifiers:

• Sampling Strategy: Undersampling of datapoints belonging to the majority
class in order to decrease the existing class imbalance. The
sampling strategy dictates how many samples of the ma-
jority class should be sampled compared to the minority
class. For example, if there are 10 malicious domains and
we want to sample 250 benign domains, then the sampling
strategy would be 10/250 = 0.04. Only the

• Normalized: This hyperparameter decides whether we normalize the
embedding vectors before training the classifier or not
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Figure 5.3: Classifier performance for different classifier hyperparameters

Sampling Strategy
Figure 5.3a shows that the sampling strategy largely does not have an impact on the aver-
age precision of the classifier. It shows that reducing the amount of benign domains in the
training dataset does not have a significant impact on the classifier’s ability to detect the
maliciously registered domains. For this reason we do not apply any undersampling in our
final classifier.

Normalizing
The second and final classifier hyperparameter that we analyze is whether or not to normalize
the embeddings. When looking at Figure 5.3b, we can tell that the difference in average
precision when normalizing and not normalizing is not very big. However in the case of all
three classifiers, normalizing the vectors does seem to slightly improve performance, which
is why we choose to ultimately normalize the vectors.

5.2.4. Chosen Hyperparameters
Now that we have explored the performance of various different hyperparameters, we have
the most optimal value for each one, which is shown in Table 5.1

Hyperparameter Type Hyperparameter Value

Embedder

Dimension 250
Sentence Length 2,000
Use Metadata False
Number of Epochs 5
Distributed Memory False
First sentence only False

Classifier Sampling Strategy None
Normalized True

Table 5.1: Chosen Hyperparameter values for final classifier.
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Final Classification Method

Now that we have explored the optimal hyperparameters for our embedder and classifier, we
can start building our final embedder and classifier. We first need to identify which of the 3
types of classifiers we have evaluated to use.

When looking at Figure 5.1 and Figure 5.3, it is clear that in every case Logistic Regression
outperforms KNN and Random Forest. To verify this we plot the mean average precision of
the three different classifier across all experiments, which is shown in Figure 6.1.

KNN Logistic Regression Random Forest
0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e 

Pr
ec

isi
on

Types of classifiers

Figure 6.1: Average Precision of KNN, Logistic Regression and Random Forest across all experiments.

The graph clearly confirms that Logistic Regression outperforms the other two classifiers.
Furthermore, when we apply all the optimal settings for the three different classifiers, we get

36
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an AP of 0.3520 for Logistic Regression, 0.3164 for Random Forest and 0.2190 for KNN. This
confirms that Logistic Regression is in fact the best classifier in our use-case.

6.1. Data
Now that we know the best classifier type as well as the best hyperparameters, we can apply
the embedder and classifier on data over a much longer time-frame. For this we use a new
registration dataset, spanning from the first of August 2023 until the 23 September 2024.

In order to create the final embedder and classifier, we model the training and test data as
close to the real-world deployment scenario as possible. This means that we include all
benign and malicious domains during the mentioned timeframe of 13 months. This leaves us
with a total of 958,282 benign domains, 1,352 compromised domains (reported after 30 days
of registration, counted as benign) and 2,118 maliciously registered domains (0.22%).

With this list of domain names registered within our given timeframe, we can collect all
queries sent within 10 days of registration for each of these domains. Any queries that were
sent after the domain was detected by netcraft is discarded as to not give the embedder and
classifier invalid information.

6.2. Training time-frame
In order to find out the most optimal amount of months to train the classifier on, we train
different classifiers on the same embedder for timeframes ranging from 1 to 11 months. The
embedder is trained on 11 months of query data (from 2023/08/01 to 2024/07/01). To more
closely emulate results we would obtain in a real-world scenario, we test the embedder and
classifier on test data from months after the training data. In our case we use 2 months of
registration data purely for testing (from 2024/07/01 to 2024/09/01), which ensures that the
classifier actually predicts data it has never seen before.

All classifiers use the same embedder to generate the domain embeddings, the only thing
that changes is at what point the training data for the classifier starts. The classifier with one
month of training data is trained on embeddings of domains registered in June 2024. The
classifier with two months of training data is trained on embeddings of domains registered
in May or June 2024, and the classifier with 11 months of training data from August 2023
until June 2024 (included). These 11 classifiers are used to make predictions on the same
2 new months of data (from 2024/07/01 to 2024/09/01), the results of which are plotted in
Figure 6.2.

This shows that the average precision for the classifiers trained on 1 to 3 months of data
perform significantly lower than classifiers trained on 4 months onward. For some reason
the classifier which was trained on 4 months of data stands out, since there is a very large
jump from 3 to 4 months, with 3 having almost no average precision at all, and 4 months
being the highest of all classifiers tested.

One possible explanation for this could be that at that month (March 2024) there were simply
more maliciously registered domains that in the months after. To verify this, we can examine
the number of benign and malicious registrations over the course of our registration data,
shown in Figure 6.3. It shows that there is indeed a significant increase in malicious domain
name registrations around March 2024. This is also apparent when looking at the ratio of
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Figure 6.2: Average Precision of classifiers with different training time-frames using the same embedder.

malicious domains in the different training sets (see Figure 6.4).
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Figure 6.3: Number of benign and malicious registrations from August 2023 until September 2024.

One would expect the performance of the classifier to further increase as the ratio of mali-
cious domains increases at 5 months, however this is not the case. This could be because the
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Figure 6.4: Ratio of maliciously registered domains in the training set.

extra month of data is not as useful because it is so far away from the testing months.

An issue this does reveal, is the fact that if the amount of maliciously registered domains
decreases, the embedder and classifier will have a harder time detecting new malicious do-
mains. Regardless of the reason for this dip in malicious registrations, we can conclude that
4 months is in our case the most optimal time-frame for training the classifier.

Now that we know that 4 months is the optimal amount for the classifier, we can explore
whether we can also train the embedder on 4 months of training data. To do this we use
the embedder from the previous experiments (trained from August 2023 until June 2024 in-
cluded), and train a new embedder trained on only 4 months of query data (from May 2023
until June 2024 included). We train a classifier using the domain embeddings of both embed-
ders, and test their performance on data from July 2024. The average precision of both of
these classifiers is 0.17, suggesting that increasing the time-frame of the embedder far into
the past does not improve the classifier’s predictions.

For this reason we choose our final method to use Doc2Vec trained on 4 months of query
data, with the Logistic Regression also being used on those same 4 months of data.

6.3. Performance
Our final classifier has an average precision of 0.17 for the training months of 2024/03/01-
2024/07/01 and the test months of 2024/07/01/2024/08/01. We plot the precision-recall graph
of our classifier in Figure 6.5, which shows the precision and recall of the classifier as the
threshold is changed. The closer the curve is to the bottom left corner, the worse the perfor-
mance; the closer it is to the top right corner, the better.
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Figure 6.5: Precision-Recall graph of our best classifier, a theoretical perfect classifier and a random classifier.

Aperfect classifier would have a consistent precision of 1 as the threshold decreases, since the
classifier would be able to perfectly separate the malicious domains from the benign domains.
Then once the threshold is at the point where it has captured all malicious domains (Recall
of 1), decreasing the threshold further will only cause more benign domains to be flagged as
well.

On the flip side, a random classifier’s precision will always be around the malicious domain
ratio, which is 0.2%. As the threshold is lowered, the precision remains the same, but the
recall increases since more malicious domains are being flagged.

While the precision recall curve of our classifier is much closer to the bottom left corner
than the top right corner, this does not mean that it is a bad classifier. A perfect classifier is
practically unattainable in any real-world scenario, and our classifier performs significantly
better than a random classifier would. This proves that detecting maliciously registered do-
mains based on just the DNS query traffic is possible. Our method is not a silver bullet, as it
still flags many benign domains, and misses many malicious domains, however it could be a
useful tool in helping DNS registries combat malicious registrations.

Another thing to keep in mind is that we are assuming that the Netcraft data we are using
is correct, however in practice this is not the case. There are bound to be False Negatives
in Netcraft, and potentially even False Positives. Unfortunately we are not in a position to
explore to what extent this is the case for this thesis, however this could be valid exploration
for future work.
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6.4. Deployment Scenario
As mentioned previously, the classifier is not able to perfectly detect all malicious domains,
however it could be used as another tool to help prevent malicious activities online.

One way this could be achieved is by simply sending the classifier’s prediction to registry
staff. So instead of sending a verdict of whether the domain is maliciously registered or not,
we cna instead just send the likelyhood of a domain being malicious. This can be combined
with other metrics to help registry staff make more informed decisions on which domains to
investigate.

This approach seems to be more sensible than simply giving a malicious/benign verdict, as
it offers more nuance and flexibility to staff and lowers the risk of false flags.

However for the sake of gaining a better understanding of the classifier’s performance, we
find an optimal threshold and then explore how the classifier would perform.

6.4.1. Selecting Threshold
In order to see how the classifier would perform, we first need to select a threshold which
has a good balance of precision and recall. We do not want our precision to be too low, since
investigating malicious domains takes resources, and we generally want to avoid false pos-
itives. We also want to have a high recall so we do not miss too many malicious domains,
however we do put slightly more importance on the precision than the recall. A good pre-
cision in this case is around 1/3, which would put the recall around 0.2. We show the exact
spot in Figure 6.6.
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Figure 6.6: Precision-Recall graph of our best classifier with selected threshold.

Our chosen threshold is around 0.1059, which gives us a Precision of 0.375 and a Recall of
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0.182. We have applied this classifier and threshold to the query data from July 2024, which
had 49,358 registrations, of which 66 were malicious. The classifier predicted 33 domains
as malicious, of which 12 were actually malicious. This means that the classifier missed 54
malicious domains.

6.4.2. Detected Malicious domains timeline
Now that we have the threshold we can also explore the time-frame of the predictions, as in
howmuch sooner is the classifier able to detect a malicious domain compared to Netcraft. We
show at which point the classifier is able to detect the malicious domains (at what point 2,000
queries are reached), and compare it to the time it took Netcraft to report (see Figure 6.7).

0 10 20 30 40
Hours after registration

Domain 12
Domain 11
Domain 10
Domain 9
Domain 8
Domain 7
Domain 6
Domain 5
Domain 4
Domain 3
Domain 2
Domain 1

Timeline of correctly classified malicious domains
Detected by

Classifier
Netcraft

Figure 6.7: Timeline of classifier for correctly classifier malicious domains.

The graph displays the duration it takes for the classifier to detect the domain in green, and
the time it took Netcraft to report them. In the cases where there is no green line, this means
that Netcraft was able to detect the malicious domain before it has received 2,000 queries.
This means that for 7 out of the 12 domains, the classifier was still able to correctly classify
the domain as malicious, but not sooner than Netcraft because the 2,000 queries were not
reached.

For 5 of the domains however the classifier was able to detect the domain as malicious, in
most cases much sooner than Netcraft. Netcraft detected these domains on average after
35 hours, while the classifier was able to detect these in just 17 hours. This means that the
classifier essentially halved the amount of time the malicious domain is able to operate, a
difference of 18 hours. In the case of Domain 5, it is able to reduce the detection time by 33
hours. Considering each second is important when it comes to shutting down thesemalicious
domains, this is a positive result.

One way this could be improved even further is by trainingmultiple classifiers, which predict
the maliciousness of the domains at different points in time. This way we could have one
classifier after say 50 queries, one after 250, one after 2,000, and so forth. This would greatly
increase the amount of malicious domains that could be detected. Implementing these sub-
sequent classifiers may be possible to do on the same classifier, which would significantly
reduce the training overhead. This would be a very interesting step for future work.
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Conclusion

In this thesis, we proposed usingword embeddings onDNS data in order to detectmaliciously
registered domain names. In order to achieve this, we first explored how DNS Query data
can be represented in a latent space in Chapter 4. We explored different possibilities for
embedding domain names and whether Metadata could improve the embeddings.

The next chapter (Chapter 5) explored the optimal classifier and hyperparameters, answering
the second research sub-question.

In Chapter 6 we created the final classifier to answer the last sub-question and assessed its
performance in a scenario more closely mimicking deployment. We examined the precision
recall graph of the classifier, which proved that the classifier is able to use the embeddings of
domain names in order to make predictions on the maliciousness of the domains. It achieves
an average precision of 17% in our realistic detection scenario, which amounts to a precision
of 36% and a recall of 18% for our chosen threshold, only using the resolver IP addresses as
input for the embedder.

We also investigated the timeline of the correctly identifiedmalicious domains, which showed
that the classifier is able to detect malicious domains significantly faster than Netcraft for half
of the correctly detected malicious domains.

All of the above allows us to answer our main research question: "How can we apply a
combination of representation learning and classification algorithms to detect newly regis-
tered malicious domains?". This is possible by using document embeddings to embed domain
names using their DNS traffic, which are then used by a logistic regression classifier to predict
whether the domain is maliciously registered or not.

In conclusion, while this approach is not fitted to make predictions on the maliciousness
of domains by itself, and it cannot detect all malicious domains, it can be a useful tool to
build upon existing detection methods, or to aid humans in the detection process. SIDN
Labs is working on deploying the method presented in this thesis at SIDN, in order to detect
maliciously registered domains in the ".nl" zone sooner.
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7.1. Future Work
There are many different ways in which this work can be extended and continued. In this
section we cover the avenues we have identified, but ended up not pursuing due to time and
resource constraints.

7.1.1. Additional Features for the classifier
Our final classifier strictly uses the embeddings generated for each domain as input. However
as other papers have shown [2, 18, 24], some features from DNS query data can also be very
indicative of the maliciousness of domains. Adding additional features from these papers to
the classifier could lead to better results, as it would receive more context and information
for each domain.

7.1.2. Subsequent Classification
One way our method could be further improved is by sequentially predicting the malicious-
ness of domains. For example instead of only making a prediction after 2,000 queries like in
our final classifier, we can instead make a prediction at multiple spots, for example after 200,
500, 2,000, 10,000 queries. This allows for more malicious domains to potentially be detected,
without sacrificing precision.

It might even be possible to use a single embedder to embed all of domains at each different
stage, however that would have to be examined.

7.1.3. Detecting Compromised Domains
One potential avenue for future work is applying embeddings and a classifier not on mali-
ciously registered domains as done in this thesis, but instead apply it on existing domains in
order to detect compromised domains.

This relies on the assumption that compromised domains have a change in traffic that is
reflected in the embeddings of the domains.

If this is the case, then one way this could be achieved is by training an embedding model
every so often (for example every day) and comparing the change in embeddings for the same
domain. If the embeddings differ significantly, this might be an indication that a compromise
of the domain took place. The reason we did not examine this further is because this is much
more resource intensive. It would require continuous training using all query data to all
domains, which amounts to about 2-3 billion queries a day in the ".nl" zone.

7.1.4. Deeper Results Analysis
Another avenue for future work is examining the False Positives and False Negatives more
closely. This would provide more insight into why the classifier and embedder may not be
performing optimally, and how this could be improved. This analysis would be challenging,
as the classifier only receives a vector as input, which makes it nearly impossible for humans
to figure out if there is an issue with this embedding.

Furthermore, the Netcraft dataset is not perfect. There are bound to be some domains which
are mislabeled, such as malicious domains being considered benign and vice-versa. It might
be worth exploring whether any of the false positives reported by our classifier are actually
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malicious domains that went undetected by Netcraft, or whether any false negatives are
actually benign domains.
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