
H I E R A R C H I C A L E C O N O M I C A C T I V I T Y C L A S S I F I C AT I O N

robin de heer

A Case Study with Text found on Web Pages

Bachelor of Science (B.Sc.)
Artificial Intelligence

Faculty of Social Sciences
Radboud University

SIDN Labs

2019-2020 – Master Thesis

Robin de Heer: Hierarchical Economic Activity Classification, A Case
Study with Text found on Web Pages, c© 2019-2020

supervisors:
Dr. F.A. Grootjen
Prof. Dr. Ir. A.P. de Vries
T.R. Wabeke, M.Sc.

location:
Radboud University, Nijmegen, the Netherlands
SIDN Labs, Arnhem, the Netherlands

time frame:
2019-2020

A B S T R A C T

Gaining insight in what economic activities the businesses with a
domain in the .nl zone participate in can help to increase online
security. In this research project, the focus lies on classification of
economic activity for business and e-commerce related domains in the
.nl zone based on the text found on those domains.

Not all economic activities are represented as well as others in
number of domains participating in that economic activity. A selection
of which economic activities were considered was made based on the
statistics of the Dutch National Statistics Office (CBS). Certain economic
activities are better represented in number of businesses than others.
The number of businesses operating in several economic activities
is low enough to manually label the corresponding domains. Not
considering those activities in the final classification model results in
higher classification performance.

The main experiments in this research project consisted of three
parts: Analyzing the influence of textual features extraction methods,
the classification methods and the classification approach. The results
indicate that, in order to achieve optimal classification performance, a
term frequency inverse document frequency (tfidf) feature extraction
method should be combined with a linear classifier trained using
Stochastic Gradient Descent (SGD) of the Modified Huber (MH) loss
function. These findings show that more complicated feature extrac-
tion methods or more complicated classifiers do not guarantee higher
classification performance.

Hierarchical classification can be employed to perform classification
on the second level the economic activity taxonomy. The final and
most important experiment in this research project is designed to
analyze if an advantage of hierarchical second level economic activity
classification exists when compared to regular “flat” classification. The
results show that when the hierarchical classification approach is used,
a higher classification performance can be achieved.

From these results can be concluded that the use of more compli-
cated methods for both feature extraction and classification does not
guarantee increased classification performance. Classification perfor-
mance can however be increased by exploiting an exisiting hierarchical
structure in the data. Using the example of economic activity clas-
sification, we show that this performance increase generalizes from
benchmark datasets to a non-benchmark problem.

The research project itself was deemed a success: Stichting Inter-
net Domeinregistratie Nederland (SIDN), the administrator of the .nl

zone, decided to take the second level economic activity classifier into

iii

production. Every month, the hierarchical classifier is used to gener-
ate economic activity classifications for all business and e-commerce
related domains in the .nl zone.

iv

A C K N O W L E D G M E N T S

I would like to thank both my internal and external supervisor for
their valuable feedback and guidance throughout the project and
express special thanks to the reviewers for their remarks. I would also
like to thank my colleagues at SIDN for motivating comments, input
and entertainment at foosball challenges.

This thesis would not look as good as it does without the Classic-
Thesis template provided by André Miede for nothing but a postcard
as thanks. I will send this postcard after graduation.

v

C O N T E N T S

i the introduction

1 introduction 2

2 pilot experiments 7

2.1 Dataset and Preprocessing 7

2.2 Data exploration . 10

2.3 Data selection . 14

2.4 Discussion . 16

ii the experiments

3 traditional economic activity classification 18

3.1 Background . 19

3.2 Methods . 23

3.3 Results . 26

3.4 Discussion . 28

4 improving classification performance by exploit-
ing the hierarchical structure 31

4.1 Background . 31

4.2 Methods . 37

4.3 Results . 38

4.4 Discussion . 38

5 deployment 41

5.1 Zone Prediction . 41

5.2 Feedback website . 42

iii the discussion

6 conclusion 47

7 discussion 48

iv appendix

a text classification applications 52

b pilot experiments 54

c feature types and classifier performance 68

d performance of the classifiers 72

e “flat” versus hierarchical classification 83

bibliography 89

vi

L I S T O F F I G U R E S

Figure 1.1 Structure of this research project. 6

Figure 2.1 Error rates and number of matches with the al-
ready labeled data. On the x-axis, the extraction
settings, name similarity and name count, are
listed. On the left y-axis, the error rate (in blue)
can be found. On the right y-axis, the number
of matches (in orange) can be found. 8

Figure 2.2 Number of occurrences per word. The y-axis in-
dicates the number of occurrences. The x-axis is
the word identifier. In blue, the initial word dis-
tribution is used. In orange, the preprocessed
word distribution is used. This graph shows
that the most occurring words are all stopwords. 10

Figure 2.3 The number of divisions per section as specified
by the CBS. On the x-axis, the sections are listed.
On the y-axis, the number of divisions of the
corresponding section is shown. 11

Figure 2.4 Illustration of the labeled data distribution over
the sections. 12

Figure 2.5 Illustration of the labeled data distribution for
4 sections. These graphs show that the data
distribution in a single division can be far from
uniform. 13

Figure 2.6 The number of words per document. On the
x-axis, the documents are listed with an integer
identifier. On the y-axis, the number of words
is indicated. 14

Figure 2.7 Illustration of how removing less well-represented
classes influences the classification performance.
On the x-axis, the number of actual businesses
in a division is found. On the left y-axis, the
performance in accuracy and macro weighted
F1 score corresponding to the blue and orange
lines is found. On the right y-axis, the number
of different sections or divisions, the red and
green lines, taken into account by the classifier
is found. 15

Figure 3.1 Recurrent Neural Network (RNN) and Recurrent
Convolutional Neural Network (RCNN) accu-
racy and F1 score for various hidden layer sizes. 28

vii

Figure 4.1 Illustration of a default "flat“ classification model.
The blue rectangle indicates between which
classes the classifier Clf1 differentiates. 32

Figure 4.2 Illustration of a Local Classifier per Node (LCN)
classification model. The blue rectangles indi-
cates between which classes a classifier Clf*
differentiates. 32

Figure 4.3 Illustration of a Local Classifier per Parent Node
(LCPN) classification model. The blue rectangles
indicates between which classes a classifier Clf*
differentiates. 33

Figure 4.4 Illustration of an Local Classifier per Level (LCL)
classification model. The blue rectangles indi-
cates between which classes a classifier Clf*
differentiates. 33

Figure 4.5 Illustration of a global or big bang classification
model. The blue rectangle indicates between
which classes classifier Clf1 differentiates. . . . 33

Figure 5.1 The data distribution as provided by the CBS
(blue), the classifier (orange) and the difference
between those distributions (green). For every
section (x-axis) is indicated what percentage of
the data it occupies (y-axis). 42

Figure 5.2 The data distribution as provided by the CBS
(blue), the classifier (orange) and the difference
between those distributions (green). For every
division (x-axis) is indicated what percentage
of the data it occupies (y-axis). 43

Figure 5.3 This figure illustrates the possible usecases of
the web application. 44

Figure 5.4 Screenshow of the functional part of the web
application. 45

L I S T O F TA B L E S

Table 2.1 Performance of several classifiers to evaluate
the quality of the newly extracted match data. 9

Table 3.1 Overview of which combinations will be tested.
Per classifier is indicated with an “X” if the fea-
ture extraction type is tested. Linear classifiers
trained using SGD of a loss function are indi-
cated as “SGD (loss function)”. 19

viii

Table 3.2 Accuracy and weighted macro F1 scores for
different feature extraction methods and clas-
sifiers. Linear classifiers trained using SGD of a
loss function are indicated as “SGD (loss func-
tion)” . 27

Table 3.3 Cosine distances to the word ’accountant’. . . 27

Table 4.1 “Flat” and hierarchical classifier accuracy and
macro weighted F1 scores. 39

A C R O N Y M S

SBI Standaard Bedrijfs Indeling

NACE Statistical Classification of Economic Activities in the European
Community

DDoS Distributed Denial of Service

KvK Dutch Chamber of Commerce

SIDN Stichting Internet Domeinregistratie Nederland

DMAP Domain name Ecosystem Mapper

tfidf term frequency inverse document frequency

SGD Stochastic Gradient Descent

MH Modified Huber

SVM Support Vector Machine

DT Decision Tree

RF Random Forest

LR Logistic Regression

NN Neural Network

CNN Convolutional Neural Network

RCNN Recurrent Convolutional Neural Network

RNN Recurrent Neural Network

PoS Part of Speech

NLTK Natural Language Toolkit

ix

acronyms x

CBS Dutch National Statistics Office

LSTM Long Short Term Memory

tf term frequency

idf inverse document frequency

SSTb Stanford Sentiment Treebank

STS Stanford Twitter Sentiment

LCN Local Classifier per Node

LCPN Local Classifier per Parent Node

LCL Local Classifier per Level

DAG Directed Acyclic Graph

IPC International Patent Classification

Part I

T H E I N T R O D U C T I O N

1
I N T R O D U C T I O N

The Internet has grown rapidly since its introduction. The .nl zone
alone consists of over six million different domains. SIDN, the admin-
istrator of the .nl zone, has classified almost one million of those
domain as business or e-commerce related. The economic activity of
the businesses corresponding to the domains can be determined in
order to gain additional insight in the zone. These insights can be used
for marketing purposes, but also and more importantly, to increase
the security of the .nl zone.

Identification of domains linked to businesses with relatively high
revenue compared to how vulnerable they are is valuable, because a
domain can be attacked. Such an attack can be a Distributed Denial of
Service (DDoS) attack. The goal of a DDoS attack is to disrupt or prevent
any possible Internet traffic to a specified domain by sending an ex-
tremely high number of requests to this domain, effectively rendering
it unable to respond to any other request [60]. These attacks can be
used to extort a business or person, but also to cripple domains. For
example, this effectively freezes the revenue generated by web shops.
Estimating the economic damage of such an attack to a business or
e-commerce domain is a difficult task, because estimating the missed
revenue can depend on different variables. Among these variables is
the economic activity a business participates in, since businesses can
be more or less dependent on their online accessibility and the revenue
of a business can vary based on the economic activity. The estimation
is useful, because it not only yields information about which economic
activity attracts DDoS attacks, but it can also be combined with other
records. For example, in which economic activity businesses are using
additional security measures to prevent or complicate DDoS attacks.
This information can be used to advise or warn about the risks of not
using these security measures. Some possible effects of DDoS attacks
are:

• DDoS attacks can cost up to 20000 US dollars per hour when used
against certain companies according to Kaspersky. Kaspersky is
a multinational cybersecurity and anti-virus company 1.

1 https://usa.kaspersky.com/resource-center/preemptive-safety/

how-does-ddos-attack-work

2

https://usa.kaspersky.com/resource-center/preemptive-safety/how-does-ddos-attack-work
https://usa.kaspersky.com/resource-center/preemptive-safety/how-does-ddos-attack-work

introduction 3

• The number of DDoS attacks will be 15.4 million US dollars
by 2023 according to Cisco. Cisco is a multinational network
technology company2.

• Up to about 25% of all traffic in a country can be DDoS attack
related3.

Machine learning will be employed to classify the economic activity
of a domain based on the text found on that domain. Machine learning
is the task of learning a function which maps the input to an output.
In this case, the input is the text found on a domain and the output is
the corresponding economic activity. After learning such a function, it
can be used to automatically obtain economic activity predictions for
previously unseen domains. This is much faster than manual labelling,
which is time-consuming and labor intensive, especially for larger
collections [71]. More information about machine learning in general
can be found in [70] and more information about text classification
can be found in [1, 93]. Appendix A contains a few examples of text
classification as well.

Various approaches to text classification exist: different feature ex-
traction methods, classification schemes and approaches to the clas-
sification problem itself. All three of those aspects will be examined
using the following research questions:

1. How important is the usage of different features with regard to
classification performance in the economic activity classification
problem?

2. How does the use of different classifiers affect classification
performance?

3. Can classification performance be improved by using hierarchical
classification?

Most more complicated concepts result in increased classification
performance on benchmark datasets in the literature. See Section 3.1
for literature related to feature extraction and classifier selection and
Section 4.1 for literature related to hierarchical classification. This
practical example of economic activity classification based on text
for domains and these research questions are intended to validate
practical use of sophisticated implementations of these three concepts.

Machine learning is heavily dependent on features (e.g. [22]). Fea-
tures are extracted from a data sample. Different methods exist to
represent text in features. One approach is the usage of tfidf. In the
case of economic activity classification, a term is a word found on

2 https://www.cisco.com/c/en/us/solutions/collateral/

executive-perspectives/annual-internet-report/white-paper-c11-741490.

html

3 https://cybersecurityventures.com/the-15-top-ddos-statistics-you-should-know-in-2020/

https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://cybersecurityventures.com/the-15-top-ddos-statistics-you-should-know-in-2020/

introduction 4

a domain and a document is all the text found on a domain. These
vectors approximate word importance and contain a number for every
word in the document collection. Another approach is to use word
embeddings. Then, every word is represented as a vector in a semantic
space. Words that have similar meaning, like “chair” and “table”, have
more similar vectors than words that do not have a similar meaning,
like “chair” and “volleyball”. The final approach examined in this
research project is to use the importance measure of tfidf as a weight
to nullify the embedding of less important words. Feature extraction
for textual data on domains for economic activity classification is
elaborated on in Chapter 3. To answer research question 1, tfidf vectors
and (inverse document frequency (idf) weighted) word embeddings
will be constructed. These features will be used as input to train a
classifier per input. The performance of the resulting classifiers will
be compared to answer the research question. The use of tfidf vectors
resulted in the highest performance.

Different approaches to machine learning exist, resulting in nu-
merous classification methods. Some linear classifiers are based on
minimizing a loss function using SGD. Others are based on the creation
of a hyperplane, which maximally separates one class from all other
classes. This is the Support Vector Machine (SVM) classifier. Another
type of classifier is the Decision Tree (DT) classifier. A DT classifier
traverses a tree of decisions based on features to a leaf node. The
leaf node will be the prediction for a set of features. In a Random
Forest (RF) classifier, the use of multiple randomly initialized DT clas-
sifiers is an example of an ensemble method. The final prediction is a
function of the predictions of all trees in the RF classifier. A Logistic
Regression (LR) classifier estimates a probability per class, achieved by
learning weights per feature. These weights are multiplied with the
corresponding features and summed, resulting in the probability of
the presence of a class.

The potentially most complicated classification method used in this
research project is a Neural Network (NN). A NN consist of a number
of layers of neurons, each connected to the previous layer. An input
is propagated through the network and a prediction can be extracted
from the final layer. Many different approaches to the creation of
a NN exist, some more complicated than others. For example, a LR

classifier can be implemented as a NN with three layers and a sigmoid
activation function [34]. When more layers are added, like in [48], the
NN becomes the most complicated classification method for this re-
search project. Classifier selection with regard to the economic activity
classification task based on textual data on domains can be found in
Chapter 3. In order to answer the research question 2, the selection
of the optimal performing classifier, several different classifiers will
be used to perform economic activity prediction for text found on
domains based on the features which resulted in the best performance

introduction 5

in research question 1. The performance of these different classifiers
will be compared to find the answer to this research question. The use
of a linear classifier trained using SGD of the MH loss function resulted
in the highest performance.

For the final and most important research question, research ques-
tion 3, the best performing features and classifiers found in research
question 1 and 2 will be used to create a hierarchical classification
scheme. This classification scheme will be compared to one classi-
fier, which is an identical classifier based on the same features. The
difference or lack of difference between the performances of the classifi-
cation scheme and the classifier will be inspected in order to determine
whether or not hierarchical classification can increase economic activ-
ity classification performance. The use of a hierarchical classification
system resulted in slightly higher performance when compared to a
single classifier. This experiment can be found in Chapter 4.

The outline of this research project is illustrated in Figure 1.1. The
introduction was this chapter. The next chapter, Chapter 2, contains
all pilot experiments. These experiments include data exploration,
a comparison of the distribution of the labeled data to the actual
distribution as provided by the CBS and data augmentation methods.
Preprocessing methods are described in this chapter as well. Chapter 3

and Chapter 4 contain the three main experiments of this research
project and correspond to research questions 1, 2 and research question
3, respectively. These chapters both have the same structure: a literature
background followed by methods, results and a short discussion of
these results. Next, the deployment of the hierarchical classifier is
discussed in Chapter 5. This research project concludes with a general
conclusion and discussion in Chapter 6 and Chapter 7, respectively.

introduction 6

Introduction
Problem description
Research questions

Pilot
Preprocessing and Dataset

Data exploration
Data selection

Traditional Classification
Literature background

Methods
Results

Discussion

Hierarchical Classification
Literature background

Methods
Results

Discussion

Deployment
Classification of business and e-commerce domains in.nl zone

Classifier deployment in feedback website (https://webcola.sidnlabs.nl)

Conclusion

Discussion

Figure 1.1: Structure of this research project.

2
P I L O T E X P E R I M E N T S

Several pilot experiments were conducted in order to gain insight
in the labeled data. These insights were required to be able to con-
duct experiments and draw valid conclusions to answer the research
questions in Chapter 1. These experiments and their requirements are
discussed in this chapter. First, a description of the dataset, a possible
method to extend the dataset and the preprocessing methods are de-
scribed. Then, the label distributions in the dataset are explored and
compared to the actual distribution as provided by the CBS. Based on
the insights acquired in those steps, a final data selection is made. The
chapter concludes with a short reflection on the methods described.

2.1 dataset and preprocessing

Due to the unique position of SIDN, the registry of the .nl zone,
the database with domain registration information was available to
obtain a list of all domains registered in the .nl zone. Domain name
Ecosystem Mapper (DMAP) [87], a web scraper, was used to obtain
various properties of the domains on this list, such as the text found
on the domain, whether or not the domain is related to a business
or e-commerce company, whether or not the domain was used to
redirect to another domain and Dutch Chamber of Commerce (KvK)
registration data. Domains which only redirected to another domain
were not considered. As data, the text found on the domain is used.

Economic activity can be quantified as in the Standaard Bedrijfs
Indeling (SBI) [13], which is derived from the Statistical Classifica-
tion of Economic Activities in the European Community (NACE) [26].
Rather than simply listing all possible economic activities, the SBI is a
taxonomy containing different level of specificity. The highest level of
the SBI taxonomy are the sections, for example section C, industry. 21

sections exists and are identified by a capital character ranging from
A to U. The second highest level of the SBI taxonomy are the divisions,
for example division C.11, the production of drinks. Every division is
in exactly one section. 86 different divisions exists and their identifiers
range from 1 to 99.

As label corresponding to data, the top two levels, the section and
the divisions of the SBI code are used, because a deliverable of this
research project is a well functioning division classifier. Three methods
were used to link SBI codes to business and e-commerce domains:

1. Scrape the domain of a business, identify a KvK identification
number and extract the SBI code from the KvK database. Listing

7

2.1 dataset and preprocessing 8

[1
. 1

.]

[0
.9

 1
.]

[0
.8

 1
.]

[0
.7

 1
.]

[1
. 2

.]

[0
.9

 2
.]

[0
.8

 2
.]

[0
.7

 2
.]

[1
. 3

.]

[0
.9

 3
.]

[0
.8

 3
.]

[0
.7

 3
.]

[1
. 4

.]

[0
.9

 4
.]

[0
.8

 4
.]

[0
.7

 4
.]

[1
. 5

.]

[0
.9

 5
.]

[0
.8

 5
.]

[0
.7

 5
.]

Settings [name similarity, name count]

0.16

0.17

0.18

0.19

0.20

0.21

Er
ro

r r
at

e

Number of matches found and error rates per settings

1200

1400

1600

1800

2000

2200

2400

2600

Nu
m

be
r o

f m
at

ch
es

 fo
un

d
in

 la
be

le
d

da
taError rate

Number of matches with labeled data

Figure 2.1: Error rates and number of matches with the already labeled data.
On the x-axis, the extraction settings, name similarity and name
count, are listed. On the left y-axis, the error rate (in blue) can
be found. On the right y-axis, the number of matches (in orange)
can be found.

an SBI code is mandatory to register a business, which ensures
that SBI code will be present.

2. Scrape the KvK database for businesses which listed a domain.

3. Find matches based on name and address in the database with
registration information and KvK database to obtain a combina-
tion of domain and corresponding SBI code.

Methods 1 and 2 were already in use by SIDN and the combination
of domains and corresponding SBI code resulting from these methods
is regarded as ground truth. Method 3 depends on two variables: the
similarity between the name and address in the domain registration
and KvK databases and the maximum number of domains per reg-
istrant. See Appendix B.3 for a visualization of how many domains
are typically registered per registrant. The name similarity was cal-
culated as the Ratcliff Obershelp distance [63], because this measure
does not take substring location into account. Expectedly, the number
of matches is higher when the name similarity threshold is lower
and the number of domains per registrant is higher. Matches were
extracted using various settings and an error rate was computed based
on the intersection of the set of new matches and the ground truth.
Figure 2.1 shows that the error rate as well as the total number of
new matches goes up when the name similarity was lower and the
maximum number of domains per registrant is higher.

This figure shows that the minimum error rate is just below 16%
at a name similarity of 0.9 and a maximum number of domains per
registrant of 1. Using these settings to minimize the noise introduced
in by the new data, 18930 additional domains were labeled. However,
after several methods of testing, the newly extracted data proved to
contain too much noise. This was tested in six different ways, shown
in Table 2.1. All classifiers were tfidf vector based linear classifiers

2.1 dataset and preprocessing 9

Accuracy F1 score

Match data only 0.4171 0.4173

Pre-train using match data 0.7039 0.7053

Not using match data at all 0.7055 0.7066

Merge match data with ground truth 0.6678 0.6703

Train with match data, test with ground truth 0.4810 0.4853

Train with ground truth, test with match data 0.3678 0.3779

Table 2.1: Performance of several classifiers to evaluate the quality of the
newly extracted match data.

trained using SGD of the MH loss function (further elaborated on in
Chapter 3). The text was first preprocessed as described later in this
section. Confusion matrices and classification reports of the listed
classifiers can be found in Appendix B.3.

In this research project, only the 104115 domains related to business
or e-commerce which could be labeled using methods 1 and 2 were
used, because the quality of the data resulting from method 3 proved
to contain too much noise.

Data preprocessing is an important if not necessary step for any
automated classification system [77, 86]. The first step is to convert
all words to lowercase. The reason this step was taken, is because the
meaning of most words does not change when capitalized. Possible
exceptions include a name, for example John Fisher. The last name
implies a connection to the fishing profession when decapitalized.
The assumption is that such examples are rare and can therefore be
ignored.

The second step eliminates irrelevant words such as stopwords, be-
cause those words do not carry any substantive meaning and can only
imply false relationships between a domain and its SBI. Digits are re-
moved as well, as they are assumed to not add to the meaning of a text.
A full stopword list can be found in Appendix B.1 and was obtained
from the Natural Language Toolkit (NLTK) [9]. Both Dutch and English
stopwords were included. Most of the .nl zone is assumed to be in
Dutch and the English stopwords were included to account for web
pages in (partly) English. Figure 2.2 further illustrates the relevance
of removing stopwords. The most occurring word without stopword
removal is “de", which is Dutch for “the". This is a meaningless word.
The most occurring word after stopword removal is “contact", which
translates to “contact" is not meaningless. 83251 different words were
eliminated by stemming and stopword removal. A peculiar detail is
that both distributions shown in this plot are not Zipfian, contrary to
the expectation that any large corpus conforms to Zipf’s law [94]. A
possible explanation for this phenomenon is that the dataset is very

2.2 data exploration 10

0

10
00

00

20
00

00

30
00

00

40
00

00

50
00

00

60
00

00

70
00

00

80
00

00

Word identifier

100

101

102

103

104

105

106

Nu
m

be
r o

f o
cc

ur
re

nc
es

de

contact

Wordcounts (sorted)
All words
Preprocessed words

Figure 2.2: Number of occurrences per word. The y-axis indicates the number
of occurrences. The x-axis is the word identifier. In blue, the
initial word distribution is used. In orange, the preprocessed word
distribution is used. This graph shows that the most occurring
words are all stopwords.

diverse. It may not be large enough to conform to Zipf’s law. Zipf’s
law states that the word frequencies in natural language corpora are
inversely proportional to their rank, resulting in a straight line in the
plot.

The third step of the preprocessing process is to stem all words. This
step ensures not only that one single word representation is used for
singular and plural forms of a word, but also for multiple verb tenses.
Any word, regardless of the language the word is in, was stemmed
using the Dutch Snowball stemmer implementation in the NLTK [9].
Stemming was chosen over lemmatization, because stemming is more
efficient. It does not use a corpus and Part of Speech (PoS) tagging,
requiring less computational power and is therefore faster.

A disadvantage could be that the roots generated by stemming are
not necessarily actual words. The assumption is that this does not
influence the ability of a classifier to differentiate between classes.

2.2 data exploration

Data exploration is necessary in order to get familiarized with the
data. Several potential problems can be addressed early on if one is

2.2 data exploration 11

A B C D E F G H I J K L M N O P Q R S T U
Section

0

5

10

15

20

25

Nu
m

be
r o

f d
iv

isi
on

s

Number of divisions per section

Figure 2.3: The number of divisions per section as specified by the CBS. On
the x-axis, the sections are listed. On the y-axis, the number of
divisions of the corresponding section is shown.

familiar with the data. In this section, the following potential problems
are addressed:

• How many divisions exist per section of the SBI? And how many
labeled data samples exist per section and per division? Are
the section and division distributions uniform? Or are certain
sections or divisions over- or underrepresented? This is known
as class imbalance. Early identification class imbalance is useful,
because measures such as class weight introduction or balanced
batch training during training phase can prevent problems in
the testing phase.

• Are labeled data distributions for sections and divisions similar
to the actual distribution as provided by the CBS? This is re-
quired to ensure a well functioning classifier can be deployed to
generate a classification for all business and e-commerce related
domains in the .nl zone.

• How many words are typically found on a domain? Is that
number high enough to be able to accurately classify the section
and division of that domain?

Not every section contains the same number of divisions. For exam-
ple, section “C” contains 24 divisions, whereas for example section “D”
contains only one division. A full visualization is found in Figure 2.3.

The labeled data distribution for the sections is shown in Figure 2.4.
Over fifty percent of the labeled data is contained in 4 sections, namely
sections “M”, “G”, “Q” and “S”, while 21 sections exist. Another

2.2 data exploration 12

M

17.1%

G

15.9%
Q

11.6%

S 10.0%

J

9.7%

P

6.8%

F

6.1%

R

5.4%

N

4.8%
C

4.5%
K

2.3% I
2.2% A, B, D, E, H, L, O, T, U3.5%

Figure 2.4: Illustration of the labeled data distribution over the sections.

peculiar observation is that, while section “C” contains 24 divisions,
it contains only 4.5% of the labeled data. Therefore, section “C” is an
example of an underrepresented class in the labeled data.

Potential problems caused by class imbalance are also present on
division level. The labeled data is not evenly distributed over the
divisions of a section and therefore not evenly distributed over all divi-
sions at all. Several examples are shown in Figure 2.5. For section “A”,
over 90 percent of the labeled data is in division “1”. A more uniform
labeled data distribution is found for section “N”. Still, division “77”
contains almost 6 times as many labeled data samples as divisions
“80”.

In order to quantify the statistic similarity between the labeled
data distribution and the data distribution as provided by the CBS,
the Kolmogorov-Smirnov test [46] is applied. This test measures the
distance between two distributions. The null hypothesis is that both
distributions are the same. If the K-S statistic is small or the p-value is
high, the null hypothesis cannot be rejected. For the sections, this test
resulted in a statistic of 0.19 and a p-value of 0.80 and for divisions, the
test resulted in an statistic of 0.07 and a p-value of 0.98. Therefore, the
null hypothesis on both section and division level cannot be rejected
and can be concluded that the distribution of the labeled data is
drawn from the same distribution as the data distribution as provided
by the CBS. A visualization of the comparison between the labeled
data distribution and the actual data distribution on both section and
division level can be found in Appendix B.2.

2.2 data exploration 13

1
91.6%

2
5.0% 33.5%

A
38

61.4%

39

20.5% 37

17.0%

361.1%

E

56

73.5%

55

26.5%

I

77

23.8%

81

22.7%

82
20.3%

78

16.0% 79

12.5%
804.7%

N

Figure 2.5: Illustration of the labeled data distribution for 4 sections. These
graphs show that the data distribution in a single division can be
far from uniform.

2.3 data selection 14

0 20000 40000 60000 80000 100000
Document identifier

101

102

103

104

Nu
m

be
r o

f w
or

ds

Number of words per document

Figure 2.6: The number of words per document. On the x-axis, the documents
are listed with an integer identifier. On the y-axis, the number of
words is indicated.

The text on these domains naturally varies in length. Some domains
have more text than others. More text can introduce more noise to a
classifier, but it can also help the classifier to make a decision on the
prediction. In order to find out how many words are typically on a
domain, a visualization was made in Figure 2.6. Inspection of this plot
reveals that most domains contain enough text to perform economic
activity classification.

2.3 data selection

Data selection is an important aspect of any classification problem.
Determining which classes will be used and therefore can be predicted
and which classes to ignore can be seen as an optimization problem:
disregarding classes can improve classification performance, but trims
the number of classes a classifier can predict, therefore reducing the
amount of information a classifier can yield. In this section, the data
selection is made and a motivation for this selection is elaborated on.

Two methods to find thresholds for removing divisions from the
data can be identified:

1. The labeled data contains only a few samples for a division
(class).

2. Only a few companies operating in a division according to the
CBS. Therefore, in the best case, only a few domains which can
be labeled with that division exist.

From these two methods, two perspectives and motivations emerge:

1. A real-world perspective: if only a handful of these web pages
for companies in a certain division exist, the use of economic
activity classification is relatively low for these web pages. One

2.3 data selection 15

0 2500 5000 7500 10000 12500 15000 17500 20000
Minimum number of businesses per division (CBS)

0.60

0.62

0.64

0.66

0.68

0.70

Ac
cu

ra
cy

 o
r F

1 s
co

re

Classifier performance and informativity

Accuracy
F1 (macro weighted)
Number of sections
Number of divivions

20

30

40

50

60

70

80

Nu
m

be
r o

f d
iff

er
en

t l
ab

el
s i

nc
lu

de
d

Figure 2.7: Illustration of how removing less well-represented classes influ-
ences the classification performance. On the x-axis, the number
of actual businesses in a division is found. On the left y-axis,
the performance in accuracy and macro weighted F1 score cor-
responding to the blue and orange lines is found. On the right
y-axis, the number of different sections or divisions, the red and
green lines, taken into account by the classifier is found.

might even consider manually labeling those web pages and
using the classification system for the remainder of the web
pages. Also, hand-labeling up to 4000 domains per division of
45 divisions can be done within reasonable time according to
SIDN.

2. A data-driven perspective: removing underrepresented classes
will result in a more robust classification system.

The performance boost by removing classes is further illustrated in
Figure 2.7. Removing divisions (in red) leads to a higher classification
performance in terms of both accuracy and F1 score (in blue and
orange, respectively) of a tfidf based linear classifier trained using
SGD of the MH loss function (further elaborated on in Chapter 3).
The final threshold was set to at least 4000 businesses per division,
resulting in at least 65 samples per division. Refer to Appendix B.4
for a complete overview of how well every division was represented,
which divisions were removed and which sections were removed
because they contained no divisions anymore.

The remaining data was split into two sets: training (including vali-
dation) and testing sets. 90% of the data was training and validation
data and 10% of the data was testing data. These splits were stratified

2.4 discussion 16

on the division labels to ensure a proportionate number of samples
per class per set.

2.4 discussion

In this chapter four main subjects were discussed: the dataset itself
and a possible extension are described, the preprocessing methods
are described and motivated, the data is explored and the insights
acquired are used to create a final data selection. These subjects were
discussed in order to obtain valuable insight in the dataset, which was
a requirement for the experiments concerning the research question.

The dataset consists of the business or e-commerce related domains
without redirects and a corresponding SBI code. This SBI code was used
to obtain the section and the division of that domain. This dataset may
contain noise, because not every entrepreneur knows the actual SBI

code when registering their business and may just check some box to
get it over with or consider participating in another economic activity.
No measures were taken to find out whether or not this happened.
The assumption is that such examples are rare.

Not all of the text found on domains was written in Dutch. These
texts were not filtered out, but English stopwords were removed as
well to account for them in a limited way. Future work could include a
translation step to account for non-Dutch domains in a more optimal
way.

The labeled data distributions were proven to be statistically similar
to the actual distributions, which was required to be able to effectively
use any resulting classifier for real-life applications. Several sections or
divisions were underrepresented in both the labeled data and actual
businesses. To overcome this problem, a selection of the data was
made. This selection was based on the number of real businesses
operating in a division. Domains belonging to businesses operating in
sections or divisions which did not make the selection are relatively
scarce and could be manually labeled if required. The remaining data
was split into training and testing sets. These training and testing sets
are used in the next chapters to evaluate the use of different features
and classifiers in Chapter 3 and classification approaches in Chapter 4.

Part II

T H E E X P E R I M E N T S

3
T R A D I T I O N A L E C O N O M I C A C T I V I T Y
C L A S S I F I C AT I O N

Traditional text classification methods usually consist of two main
components: the feature extraction method and the classifier. This
chapter also consists of those two components: firstly, different fea-
ture extraction methods are examined in order to select the feature
extraction method resulting in the highest performance for economic
activity classification. Secondly, various classifiers are employed in
order to select the highest performing classifier for this problem. The
combinations of feature extraction methods and classifiers which are
examined are marked with an “X” in Table 3.1. This table also shows
that not all combinations are tested. The feature extraction method is
selected using a linear classifier trained using SGD of the MH loss func-
tion. All other classifiers with exception of the NN classifiers are tested
with the resulting feature extraction method. The NN classifiers were
tested using word embeddings, because this is what NN classifiers
with Long Short Term Memory (LSTM) [37] neurons are optimized for.

The reason that the use of different features is explored is that fea-
tures of higher quality can result in higher classification performance
[22]. Three feature extraction methods are considered: the importance
measure based term tfidf vectors and the vectorspace based word em-
beddings. The final feature set is engineered by using the importance
measure of tfidf, idf, as a weight for the word embeddings to see if both
advantages can be combined in a single feature set. Next, in order
to obtain a full overview of classifier performance per classification
method, different tfidf vector based classifiers are trained and evalu-
ated. Furthermore, a RCNN [48] and a RNN are trained using word
embeddings.

The hypotheses are that:

a) The use of idf weighted word embeddings will result in the high-
est classification performance, because this feature extraction
method combines the importance measure of tfidf vectors and
the semantic information of word embeddings.

b) The RCNN classifier will outperform all other classifiers. This
classifier achieved state of the art performance in various text
classification tasks and is the most complex and innovative of all
tested classifiers.

By testing these hypotheses, the use of more complicated features
and classifiers can be validated for a non-benchmark problem. The use
of both more complicated features and classifiers shows promising

18

3.1 background 19

tfidf vectors Word embeddings idf weighted

word embeddings

SGD (MH) X X X

SGD (hinge) X

LR X

SGD (log) X

DT X

RF X

RNN X

RCNN X

Table 3.1: Overview of which combinations will be tested. Per classifier is
indicated with an “X” if the feature extraction type is tested. Linear
classifiers trained using SGD of a loss function are indicated as
“SGD (loss function)”.

results in the literature. For example, the RCNN [48] broke several
records of benchmark tasks.

This chapter is built as follows: a literature background on both
feature extraction and classification schemes followed by experiment
methods, results and wrapped up by examining the implications of
the results and answering research questions 1 and 2 in the discussion.

3.1 background

Various approaches for feature extraction from textual data exist. In
this research project, the importance measure per word based tfidf

vectors and the vectorspace based word embeddings are examined
more closely. Selecting a feature extraction method is important, be-
cause it may influence final classification performance greatly, just like
the type of classifier used. A literature background for both feature
extraction methods and classifiers will be given in this section.

3.1.1 Feature Extraction Methods

Intuitively, word statistics can yield information about text subjects
[54]. Multiple occurrences of the words ’processor’, ’memory’ and
’hard disk’ can for example indicate that a document is about com-
puters. Luhn [54] was mainly thinking about term frequency (tf) per
document, but did not consider the possibility of words occurring in
many documents. A word’s discriminative power diminishes when
it occurs in more documents. When combined with term specificity
[76] or idf, which is a measure of term importance across the entire

3.1 background 20

document collection, a tfidf vector per document, which is a robust
metric of term importance per term can be constructed.

A problem with tfidf vectors is that they do not account for semantic
similarity between words. For example, synonyms may have com-
pletely different idf values. To address this problem, Mikolov et al. [59]
proposed to use word embeddings. Those embeddings are constructed
by training a neural network with one hidden layer to predict nearby
words based on the word used as input. Every word is represented
as a one-hot vector. After training, the embedding of a word can be
extracted by executing one forward pass through the trained network
with a the one-hot vector of the desired word as input and extracting
the weights of the hidden layer. These embeddings proved quite pow-
erful and they are easily trained and fine-tuned for specific collections.
As such, Word2Vec [59] was used as input for Convolutional Neural
Network (CNN)s to perform various sentence classification tasks [42].
The CNN performed remarkably well compared to other approaches
which did not use word embeddings. This work makes it clear that
word embeddings can make a CNN perform exceptionally well. For ex-
ample, Lai et al. [48] employs word embeddings in a RCNN to perform
various text classification tasks and achieves (better than) state-of-the-
art results. While the word embeddings themselves are static, the use
of a convolution layer ensures a local contextual representation.

A combination of tfidf vectors and word embeddings is possible as
well. Then, the idf value of a word is used as the weight for the word
embedding. The idea here is to nullify the non-important embeddings
in order to minimize the influence of the non-important words and to
put an emphasis on the influence of the important words. A detailed
description of how to do this can be found in i.e. [4, 19].

3.1.2 Classifiers

A commonly employed classifier type for text classification is the SVM,
because of its simplicity and high performance in general on text
classification tasks [39, 40] compared to Naive Bayes, Rochhio, C4.5
and k-Nearest-Neighbours classifiers. An SVM is normally a binary
classifier, but by creating a one-vs-all classification scheme [44], a prob-
lem of n classes can be approached by using nclass ∗ (nclass − 1)/2 SVM

classifiers in which each classifier distinguishes between two classes.
An SVM classifier finds the optimal hyperplane in the input space to
separate one class from other classes. This plane does not have to be
linear in nature, but can also be implemented by some other function.
SVMs perform well on text classification problems, because they can
handle high dimensional data well and reducing the dimensionality
disregards information. It is shown that a classifier performs best
when using all features [40]. Even removing the features with the least
(binary) information gain reduces the classification performance. The

3.1 background 21

authors also show that even when only using the worst features, the
classifier performs better than chance level. This indicates that even
those features hold somewhat important information. This shows that
all features are important and that a classifier should be able to deal
with a large number of features. Another reason SVMs handle textual
data well, is because they can handle sparse data quite well and tex-
tual data is sparse [43]. The final reason SVMs perform well at text
classification problems is because those problems are usually linearly
separable and the task of an SVM is to determine a decision boundary
between a specific class and the remainder of the classes. All in all,
the SVM classifier is robust and well performing at text classification
problems.

Text classification can also be viewed as a rule-based problem. There-
fore, a DT classifier is a valid option as well. The occurrence of specific
words can indicate a topic. Previous research successfully applied
DT classifiers to classify news articles [3]. However, DTs are prone to
overfitting. A solution to this phenomenon is to generate multiple
DTs and determine the final prediction as a function of the individual
predictions [2]. This set of DT classifiers is known as a RF classifier [12].
This approach is known as an ensemble approach, in which multi-
ple so-called weak learners are capable of achieving final predictions
which are more accurate than the predictions of each individual weak
learner.

Another classification method is LR. The name falsely implies usage
for regression tasks. The classifier predicts a probability per class. The
origins and developments of LR can be found in [18]. LR is used for
various text classification tasks [30, 51]. Genkin, Lewis, and Madigan
[30] used a Laplacian prior as an addition to the LR algorithm to avoid
overfitting. While their algorithm does not greatly outperform an SVM,
it has the advantage of handling sparse data very well. Therefore,
it can to great effect be used when the data is sparse (i.e. text). In
the field of information retrieval, problems of unlabeled data arise
frequently. To circumvent this problem, Lee and Liu [51] proposed to
label the unlabeled data as the negative class. While this approach
introduces noise in the data, a LR model with sufficient regularization
is capable of achieving high performance when employed for text
classification. Their approach is proven successful after testing.

A linear classifier can be implemented using the SGD optimization
method. This classifier uses a loss function, which can be any function
of the predicted and true labels, and attempts to find the minimum of
that loss function using SGD. This minimum is usually achieved when
the predicted and true labels are identical. This loss function can be
customized at will to optimize the classifier for any specific problem.
The algorithm itself traces back to the Robbins–Monro algorithm [65].
SGD is now a well established and important tool in machine learning
[10]. The classifier uses an approximation of the actual gradient in the

3.1 background 22

data. Therefore, the computational power required to compute the
gradient at each iteration is reduced and every iteration is completed
faster at the cost of a lower convergence rate [11].

A trend in machine learning is to use (deep) NNs for classification
tasks. Such a NN consists of a varying number of layers of neurons
which are connected to neurons in the previous and next layer or
even to themselves in a RNN. A computational model for NNs was
first proposed by McCulloch and Pitts [57]. Later, ’calculators’ as
the authors called it [28] were created which operated according to
the Hebbian learning rule [35]. All of those networks however, were
static in nature and could not yet be adapted to learn a problem.
Later, the first perceptron was created [67]. A perceptron is a linear
classifier for binary problems which estimates its output depending
on input variables. In the learning algorithm, the decision boundary, a
straight line, will be learned to optimally separate the classes. While
this perceptron did not have any hidden layers, extensions for those
hidden layers were possible. Later, the backpropagation algorithm
was proposed by Rumelhart, Hinton, and Williams, which allowed
training NN with hidden layers to be trained for specific purposes.
The backpropagation algorithm adjusts weights between neuron by a
small value in order to perform better. Upon convergence, the training
is complete and the network is ready for testing.

NNs have also been employed to tackle text classification problems.
Previous work describes the use of Word2Vec [59] as input for CNN [42]
to perform various sentence classification tasks. Word2Vec is a method
to convert words into vectors and is widely used as an alternative
to for example tfidf vectors to provide features. Convolutional layers
are layers in a NN which are connected to specific neurons from the
previous layer, in order to preserve spatial information. In the case of
text classification, the spatial information consists of the context. The
CNN performed remarkably well compared to other approaches which
did not use word embeddings. This work makes it clear that word
embeddings can make a CNN perform exceptionally well. Another
approach using NNs is based on character level embeddings [23]. This
approach resulted in the state-of-the-art performance in sentiment
analysis on both the Stanford Sentiment Treebank (SSTb) and the
Stanford Twitter Sentiment (STS) databases. The SSTb dataset contains
sentences labeled by sentiment and the STS dataset contains Twitter
messages labeled by sentiment.

Word embeddings were also used in a RCNN to perform various text
classification tasks and achieved (better than) state-of-the-art results
[48]. The word embeddings are static, but the use of a convolution
layer ensures a local contextual representation. The recurrent aspect
of the network allows the use of multidimensional word embeddings.
Every document consists of multiple words and every word consist
of multiple features. Further importance of local contextual represen-

3.2 methods 23

tation is shown more recently, in [80]. The authors show that a CNN

(context is considered) outperforms the RNN (context is not considered)
in document classification.

3.2 methods

3.2.1 Feature Evaluation Experiment

The tfidf vectors were constructed as in Equation 3.1. In this equation, t
is the term, the word, d is the document, the text, tf(t,d) is the number
of occurrences of a term t in a document d and idf(t) is the inverse
document frequency of term t. idf(t) is calculated as in Equation 3.2.
In this equation, df(t) is the number of documents a term t occurs
in. 1 was added in the denominator for smoothing purposes and to
avoid zero-divisions. The resulting tfidf vectors were subsequently
normalized by the Euclidean norm as in Equation 3.3. Only the 50000

most occurring words were considered. The same words are used in
both feature extraction methods.

tfidf(t,d) = tf(t,d) · idf(t) (3.1)

idf(t) = log(
1+n

1+ df(t)
) (3.2)

vnorm =
v

||v||2
=

v√
v21 + v22 + · · ·+ v2n

(3.3)

The second and third feature extraction methods depend on word
embeddings [59]. These embeddings are obtained by training a neural
network with only one hidden layer to predict the next word. After
training, word embeddings can be obtained by using the target word
as input and extracting the weights of the hidden layer. An advantage
of this method is that semantically related words will activate the
network similarly and are therefore closer together in the vectorspace.
The cosine distance can be used to measure similarity between the
word embeddings.

The word embeddings were obtained using Word2Vec, included in
the Gensim [64] library for the Python programming language. Most
parameters for training this were left on default. 4 parameters were
changed: the number of iterations over the whole dataset was set to 10.
Using a high value may result in overfitting. For word embeddings,
overfitting occurs when non-existent relationships between words

3.2 methods 24

are found and expressed in the embeddings. The number of hidden
units of the network and therefore also the length of the constructed
embeddings was set to 300. Several advantages and disadvantages
exist for a bigger size: the embeddings are better able to express the
meaning of the word, but it takes longer to obtain the embedding itself.
When a bigger value is used, the risk of overfitting also becomes bigger.
However, taking a small value may result meaningless embeddings.

For fitting the model, the text on the entire business/e-commerce
fraction of the .nl zone was used, including the text from domains
without an economic activity label, because more data ensures a more
robust final model. Training on all domains was possible, because
Word2Vec is an unsupervised method, meaning that it does not require
labels. Limiting the number of words included in the model was
required due to memory issues. Therefore, and to avoid experimental
design flaws, the words included in the Word2Vec model were the
same 50000 words as in the tfidf feature extractor.

The features resulting from the Word2vec model were embeddings
for every word in a document. Not all documents were of the same
length and moreover, the classifiers provided by SciKit Learn [61]
cannot handle multiple dimensions per data sample. These limitations
will be addressed by using the more complicated RCNN [48] classi-
fier. Therefore, two methods were utilized to transform the extracted
features to one one-dimensional feature vector:

1. Average all embeddings of a document per dimension to obtain
one feature vector containing 300 elements per document. This
method effectively reduces all word embeddings of a document
to a single document embedding of the same size.

2. Multiply the word embedding with the idf value of the word.
Then average all word embeddings of a document per dimension
to obtain one feature vector per document as in the first method.

In order to be able to answer research question 1, what features to
use to achieve the highest performance, a SGD classifier with the MH

loss function was trained for all features to predict SBI sections. The re-
search question can then be answered by comparing the performances
of these classifiers.

3.2.2 Classifier Evaluation Experiment

Various classification methods were explored in order to find the most
suitable one for economic activity classification. The tested classifica-
tion methods include a linear classifier trained with SGD of the hinge,
log and MH loss functions, a LR classifier, a DT classifier and a RF

classifier with 200 estimators and a maximum depth of 50.
SGD classifiers based on the hinge and log loss functions are essen-

tially SVMs and LRs, because SVMs use the hinge loss function and LRs

3.2 methods 25

use a log loss function. SciKit Learn [61] implementations were used
for all classifiers.

Several different methods of overcoming class imbalance are pos-
sible. Perhaps the easiest method is to introduce class weights in the
training phase. This method was chosen for its simplicity. Alternatives
include balanced batch training or generating addition data for the
minority classes with for example SMOTE [17]. Class weights counter
data imbalance effects from underrepresented classes. These weights
were calculated as in Equation 3.4 [61]. In this equation, Wc is the
weight of a class c, y consists of all labels and therefore |y| is the length
of the dataset, |set(y)| is the number of different labels existing in y

and |c| is the size of class c.

Wc =
|y|

(|set(y)| · |c|)
(3.4)

MH loss is calculated as in Equation 3.5. In this equation, f(x) is a
classifier score and y is a binary class label y ∈ {+1,−1}. max(0, 1−
yf(x)) is also known as the hinge loss, which is used by SVMs. In the
MH loss, the smoothed quadratic hinge loss is used. A one-versus-
all scheme was employed, because of the binary nature of both the
linear classifier trained with SGD of the MH loss. A binary classifier is
trained to distinguish one class from all other classes for every class
in the training phase. Confidence scores are calculated and the class
belonging to the classifier with the highest score is adopted as final
prediction.

L(y, f(x)) =

max(0, 1− yf(x))2, if yf(x) >= −1

−4yf(x), otherwise.
(3.5)

A RCNN classifier was employed in addition to the baseline set
by the linear classifiers trained with SGD of the hinge, log and MH

loss functions, LR, DT and RF classifiers. This classifier trained for
10 epochs with the following parameters: a batch size of 128, the
RMSprop optimizer and the categorical cross-entropy loss function.
The architecture of the network was adapted from a record-breaking
network [48] and uses LSTM units [37] to account for the dimensionality
of the input. The full configuration of the RCNN can be found in
Appendix D.3.

In order to generate the left and right contexts of a document, all
words in that document were shifted one index to the left or right.
The first and last words were set to the last and first index. Training
the RCNN was a computationally heavy task, because the input size
is three times as much as its non-convolutional counterpart due to
the fact that left and right contexts were also used as input. Therefore,

3.3 results 26

another network similar to the RCNN was trained to determine the
value of the convolutional and pooling layers. This network had the
exact same layout as the RCNN without those layers. Both networks
were trained with various hidden layer sizes. Hidden layer 1, the LSTM

[37] layer, always contains twice as many units as hidden layer 2, the
normal layer, and was tested with sizes of 100, 150, 200, 250 and 300.

All classifiers described in this section were trained to predict SBI

sections and the results will yield insight in how different classifiers
perform at the prediction of economic activity when using nothing
but the text found of the homepages of all domains of e-commerce or
businesses in the .nl zone.

3.3 results

The results of both the feature and classifier experiments are listed
in this section. Furthermore, the word embeddings themselves are
examined further, because the usage of those embeddings did not
result in a higher classification performance than the use of tfidf vectors.

3.3.1 Feature Extraction Methods

The goal of this experiment was to determine which type of feature
extraction method resulted in the highest classification performance.
In Table 3.2, the accuracy and macro weighted F1 score [84] of the
linear classifier trained using SGD of the MH loss function are listed
on the first row. The accuracy indicates the percentage of correct
classifications. The macro weighted F1 score shows the performance
in terms of precision and recall for every class. The F1 score will be
lower if the classifier is biased toward a class, while the accuracy is
not necessarily lower. Using tfidf vectors as features resulted in the
highest classification performance with an accuracy of 0.70 and the
use of idf weighted average word embeddings resulted in the lowest
classification performance with an accuracy of only 0.46.

To further investigate why the use of embeddings resulted in lower
performance, the Word2Vec model itself was manually evaluated
by extracting the words most similar to a manually picked word
and checking if those words were semantically related to the word.
Table 3.3 shows the 10 most similar words to the word ’accountant’.
All words were already stemmed, which explains the occurence of the
word “accountantskantor”. All words found imply a certain presence
of accountants, tax or have something to do with bookkeeping. The
Word2Vec model itself was therefore found to function properly.

Full classification reports and confusion matrices for all linear clas-
sifiers trained using SGD of the MH loss function per feature extraction
method can be found in Appendix C. The confusion matrices indicated

3.3 results 27

tfidf vectors Word embeddings idf weighted

word embeddings

SGD (MH) 0.70 0.70 0.60 0.62 0.46 0.49

SGD (hinge) 0.66 0.67

LR 0.69 0.69

SGD (log) 0.67 0.67

DT 0.48 0.48

RF 0.64 0.64

RNN 0.64 0.60

RCNN 0.67 0.62

Table 3.2: Accuracy and weighted macro F1 scores for different feature ex-
traction methods and classifiers. Linear classifiers trained using
SGD of a loss function are indicated as “SGD (loss function)”

Rank Word Cosine distance

1 accountantskantor 0.788605

2 belastingadviseur 0.768227

3 accountancy 0.737502

4 registeraccountant 0.689978

5 fiscalist 0.662791

6 administratiekantor 0.655958

7 boekhouder 0.627767

8 administratieconsulent 0.608103

9 bedrijfsadviseur 0.605927

10 belastingadvieskantor 0.601040

Table 3.3: Cosine distances to the word ’accountant’.

3.4 discussion 28

(100, 50) (150, 75) (200, 100) (250, 125) (300, 150)
Hidden layer dimensions (LSTM, Dense)

0.61

0.62

0.63

0.64

0.65

0.66

0.67

0.68

Cl
as

sif
ica

tio
n

ac
cu

ra
cy

 o
r f

1

RNN and RCNN performance for various hidden layer dimensions

rnn acc
rnn f1
rcnn acc
rcnn f1

Figure 3.1: RNN and RCNN accuracy and F1 score for various hidden layer
sizes.

that every classifier made similar mistakes, but to a higher extent for
the less well performing classifiers.

3.3.2 Classifiers

Various classifiers were tested to measure their performance in tackling
the economic activity determination problem. Table 3.2 also contains
the accuracy and macro weighted F1 scores are listed per classifier.
The linear classifier trained using SGD of the MH loss function achieved
the highest performance with an accuracy of 0.70. The LR classifier
performed second best with an accuracy of 0.69. The DT classifier
performed worst with an accuracy of 0.48. A full classification report
and a confusion matrix per classifier can be found in Appendix D.

Various hidden layer sizes were experimented with to determine
the optimal configuration of the final neural network. The value of
the semantic layers (convolution and pooling) was also determined by
comparing an RCNN with an RNN. Figure 3.1 shows the performance
of both the RNN and RCNN for different hidden layer sizes. The RCNN

proved to be superior with an accuracy of 0.67, while the RNN reached
an accuracy of 0.64. Notable is that the performance of the RNN kept
increasing as the number of hidden units became bigger, while the
RCNN shows a small drop in performance at the highest dimensions.
Confusion matrices for the best performing RCNN and RNN can be
found in Appendix D.3.

3.4 discussion

In this chapter, an experiments to investigate research question 1 and
2 are described. These research questions entailed the influence of

3.4 discussion 29

the feature extraction method on classification performance and the
influence of the classifier type on classification performance.

Three different feature extraction methods were used: tfidf vectors,
average word embeddings and average word embeddings with idf

weighting. Subsequently a linear classifier trained using SGD of the MH

loss function was trained for each of those features. Contrary to the
hypothesis, the use of tfidf vectors resulted in the highest classification
performance, while the use of average word embeddings with idf

weighting resulted in the lowest classification performance. Both these
outcomes are surprising, because previous work shows that the use of
word embeddings is a powerful method of representing text (e.g. [42,
48] and idf weighted word embeddings generally improve performance
compared non weighted word embeddings (e.g. [4, 19, 55]).

A possible explanation for inferior performance when using word
embeddings is that for every document, all embeddings were com-
bined in one single embedding, reducing the information carried
by the final embedding. This is reflected by the fact that both the
RNN and RCNN classifiers, which were trained using full word em-
beddings, performed similar to the other classifiers. The tfidf vectors
were not altered, meaning that they still contained all information
that was originally there. Another possibility is that word embeddings
are less powerful when used as features for longer documents. One
controversial result is the sudden drop in performance when using
average word embeddings with idf weighting. One should expect the
performance to be higher, because using tfidf vectors results in the
highest performance, but instead it is lower. The Word2Vec model was
examined more closely to determine if it was functioning correctly,
which was the case. The tfidf vectors were assumed to function prop-
erly as well, because the use of tfidf vectors resulted in the highest
performance. Therefore, further work is required to investigate why
the use idf weighted word embeddings resulted in such a sudden drop
in classification performance.

Several different classifiers were employed as well: linear classi-
fier trained using SGD of the hinge, log and MH loss functions, a LR

classifier, a DT classifier, a RF classifier, a RNN classifier and an RCNN

[48] classifier. Every classifier with exception of the RNN and RCNN

were trained using tfidf vectors, because those vectors resulted in the
highest performance. The RNN and RCNN were trained using full word
embeddings, because these classifiers could handle the multiple di-
mensions of those features. Multiple dimensions for the hidden layers
were tested as well in order to determine the optimal configuration.
The main function of the RNN classifier was to determine the value
of the convolutional and pooling layers of the RCNN. The RNN was
consistently outperformed by the RCNN, implying that the semantic
context of a word yields information relevant for classification. How-

3.4 discussion 30

ever, the difference is relatively small with only 3 to 4 percent in terms
of accuracy or F1 score.

The linear classifier trained using SGD of the MH loss function
achieved the highest performance, contrary to the hypothesis. The
hypothesis was that the more complicated RCNN with the more com-
plicated word embedding features would achieve the highest per-
formance. While the word embedding based RCNN achieved almost
similar performance, both the classifier and the feature extraction
methods are computationally much heavier and much more com-
plicated. In order to keep the classifier and the decision it makes
understandable, the choice for the linear classifier trained using SGD of
the MH loss function was made to investigate the influence of the flat
or hierarchical approach on the classification performance in Chap-
ter 4. Training classification systems costs computation power. Simpler
systems require less power, which is why classification systems should
be kept as simple as possible. Further reading about the energy cost
of training can be found, i.e. [72, 78].

Both these results prove that more complicated feature extraction
methods or more complicated classification schemes do not guarantee
higher performance. While these more complicated methods may
result in higher performance when testing with a benchmark dataset
such as the 20NG [49] dataset, they do not perform better at the task
of economic activity classification based on text found on web pages.

4
I M P R O V I N G C L A S S I F I C AT I O N P E R F O R M A N C E B Y
E X P L O I T I N G T H E H I E R A R C H I C A L S T R U C T U R E

The use of hierarchical information can lead to higher classification
performance [74]. This chapter aims to thoroughly investigate whether
or not hierarchical classification can achieve higher performance than
traditional “flat" classification as described in the previous chapter
(research question 3). The hypothesis is that the hierarchical classifi-
cation system would outperform the “flat" classifier. The intention is
to prove that the concept of hierarchical classification will generalize
from benchmark datasets to a real-life problem such as economic ac-
tivity classification for web pages. This chapter contains a background
on hierarchical classification approaches, applications and challenges
in Section 4.1, the methods and results of the experiment conducted
in Section 4.2 and Section 4.3 and concludes with a short discussion to
answer the research question and interpret the results in Section 4.4.

4.1 background

Hierarchical classification is the task of exploiting an existing structure
in the data to improve classification performance. An elaborate back-
ground on how hierarchical classification can be done is given in this
section. First, several possible approaches to hierarchical classification
as identified by Silla and Freitas [74] are described. Second, examples
of applications of hierarchical classification are given for textual, vi-
sual and auditory modalities and protein classification. Last, possible
limitations of hierarchical classification are given.

4.1.1 Approaches

Contrary to default “flat” classification, hierarchical classification aims
to exploit an existing structure in the data. Different approaches have
been distinguished [74]. An illustration of how “flat” classification
works can be helpful to understand hierarchical classification. Given
an existing structure in the data, only one single classifier is trained
and any hierarchical information is disregarded. This approach is
shown in Figure 4.1. In this figure, each node represents a label. The
classifier does not consider the labels in nodes A,B,C, but only the
labels in leaf nodes. The labels considered by a classifier are grouped
in the blue outline. Nodes A,B,C are the toplevel nodes. Child nodes
of toplevel nodes are sublevel nodes. Any hierarchical context from

31

4.1 background 32

Root

A B C

C.1 C.2 C.3 C.4A.1 A.2 A.3 B.1 B.2

Clf1

Figure 4.1: Illustration of a default "flat“ classification model. The blue rect-
angle indicates between which classes the classifier Clf1 differen-
tiates.

Root

A B C

C.1 C.2 C.3 C.4A.1 A.2 A.3 B.1 B.2

ClfC2 ClfC3 ClfC4

ClfC

ClfB2ClfB1

ClfB

ClfA2ClfA1

ClfA

ClfC1ClfA3

Figure 4.2: Illustration of a LCN classification model. The blue rectangles
indicates between which classes a classifier Clf* differentiates.

the parent nodes is completely ignored. The classifier only considers
the leaf nodes.

The first hierarchical approach examined is the LCN approach [74].
A binary classifier is constructed to recognize whether or not a sample
belongs to a category for every node in the tree. Figure 4.2 illustrates
this approach. This approach features natural multi-label incorpora-
tion and is simple to implement and understand.

A slightly more complicated approach is the LCPN approach. This
approach differs from the LCN approach in the fact that for every
parent node a different multi-class classifier is constructed. Figure 4.3
illustrates how LCPN functions. While this approach struggles with
multi-label problems, less classifiers are trained compared to when
using the LCN approach while it is still relatively simple to implement
and understand.

The LCL approach is hardly ever used in the literature [74]. This
approach trains a flat classifier for every level in a hierarchy. Hierar-
chical classification depends on the divide and conquer strategy and
this approach makes minimal use of this strategy, which may be the
reason it is sporadically used. Figure 4.4 illustrates this approach.

The final approach is the highly custom global or big bang ap-
proach. In this approach, a single model is trained for all classes. This
model considers all class membership constraints in a straightforward
manner in both training and testing phases, usually based on mutual

4.1 background 33

Root

A B C

C.1 C.2 C.3 C.4A.1 A.2 A.3 B.1 B.2

ClfRoot

ClfA ClfB ClfC

Figure 4.3: Illustration of a LCPN classification model. The blue rectangles
indicates between which classes a classifier Clf* differentiates.

Root

A B C

C.1 C.2 C.3 C.4A.1 A.2 A.3 B.1 B.2

Clf1

Clf2

Figure 4.4: Illustration of an LCL classification model. The blue rectangles
indicates between which classes a classifier Clf* differentiates.

exclusion. Because only a single model is trained, the classification
performance is heavily dependent on the underlying learning algo-
rithm and cannot be fine-tuned for subtrees, e.g. node C and its child
nodes in Figure 4.5. This figure also illustrates the global approach.

4.1.2 Applications

Hierarchical classification has been used across different modali-
ties. In text classification, datasets such as the 20 Newsgroups [49],
OHSUMED [36] and the US Patent Database are hierarchical in nature.
Other problems, across all modalities, can be transformed in their

Root

A B C

C.1 C.2 C.3 C.4A.1 A.2 A.3 B.1 B.2

Clf1

Figure 4.5: Illustration of a global or big bang classification model. The blue
rectangle indicates between which classes classifier Clf1 differen-
tiates.

4.1 background 34

hierarchical counterpart by creation of sub or super categories. An
example of the creation of a document hierarchy is to generate one
based on topic correlation [56].

4.1.2.1 Text Classification

The hierarchical approach can be used to improve text classification.
Different datasets can be used to test methods. For example, the 20

Newsgroups dataset [49] is hierarchical in nature and can therefore
be used to perform hierarchical document organization. The dataset
will now have 7 toplevel categories and 16 sublevel categories, some
of which also have child nodes. The OHSUMED [36] database is
a subset of the MEDLINE database. It contains titles and abstracts
from 270 medical journals in 23 categories, which are called Medical
Subject Headings (MeSH). This dataset is not a tree, but a Directed
Acyclic Graph (DAG), which may complicate learning. For example,
Cesa-Bianchi, Gentile, and Zaniboni [15] removed the nodes which
did not have a unique path to the root node, because their algorithm
could not deal with DAGs. In for example [33, 68, 91], the authors
show that a hierarchical approach outperforms the flat approach
when tasked with text classification using the OHSUMED dataset.
Chakrabarti et al., Yoon, Lee, and Lee also tested their hierarchical
approach with the 20 Newsgroups dataset and it outperformed the
standard flat approach. News article datasets (such as Reuters datasets)
are inherently hierarchical. For example, in [45], the authors propose
the LCPN approach for this problem and achieve higher performance
when using this approach than when using the flat approach.

The US Patent Database also lends itself perfectly for hierarchical
classification, because all patents are stored according to the hierarchy
of the database. Therefore, labeled data is readily available. In [50],
the use of an hierarchical approach did not yield significantly better
performance than a flat method. Chakrabarti et al. [16] however shows
that the hierarchical approach can outperform the flat approach in
patent classification.

4.1.2.2 Image Classification

In image classification, hierarchies can be of use as well. For example,
objects in images, (i.e. animals) can also be hierarchically ordered. The
ImageNet dataset [20] is exceptionally suitable for hierarchical image
classification. This dataset consists of 14 million labelled images in 27

top-level categories. For example, in [41], the authors use hierarchical
classification to outperform flat classification.

In [38], a hierarchical system for live fish recognition with a reject
option is created. The reject option is used if the confidence of the
classifier decisions is below a threshold. While the bigger contribu-

4.1 background 35

tion of this paper is the fish recognition application, their approach
outperforms both the flat approach and other hierarchical approaches.

The Princeton Shapes Database [73] can also be used to test hierar-
chical classification models. Barutcuoglu and DeCoro [8] show that
using a Bayesian aggregation of a tree can correct class inconsisten-
cies and improves classification performance in both tree and DAG

hierarchies.
Another hierarchical image classification task can be found in the

medical imaging field. In [21], the authors apply a global hierarchical
image classification algorithm to the medical image annotation task
from ImageCLEF2009 [81]. The data consists of X-ray images anno-
tated by 4 axes: the Technical (modality) axis, the Directional (body
orientation) axis, the Anatomical region axis and the Biological system
axis. The annotations are provided by the IRMA group [52]. The au-
thors find that the hierarchical approach outperforms flat approaches
and even was the best performing method reported in the literature.

Another visual domain in which hierarchical classification can be
employed is the prediction of crops based on satellite images [62]. In
this work, satellite image is used to predict which crops are in which
fields and where the fields are. The hierarchy consists of two toplevel
classes, which contain three and six sublevel classes, respectively. The
authors find that the best accuracy is achieved using hierarchical
classification based on SVMs.

4.1.2.3 Sound Classification

Hierarchical classification can be employed in the auditory domain.
For example, in [88], the authors propose to use different classifiers for
male and female utterances and subsequently determine the sentiment
carried in the utterance. This addition to the model improved the clas-
sification performance. Another auditory problem is to identify a bird
by its song. Goëau et al. [32] conclude that not using the background
species in classification actually improves the performance. This con-
tradicts any other research in hierarchical context. No explanation is
given for this phenomenon.

Hierarchical structures have also been used to improve performance
in music genre classification. Li and Ogihara [53] propose to use two
manually generated two-level hierarchies for the task. The idea is
that music genres are not completely independent of one another,
but that different genres can show similar characteristics. The authors
find that the usage of the hierarchies improves classification perfor-
mance. In this publication, the authors also propose a method to create
hierarchies automatically in a data-driven fashion.

4.1 background 36

4.1.2.4 Protein Classification

The last research field in which hierarchical classification is widely
employed is in protein function prediction. The biggest challenge here
is that the function of very similar proteins can differ greatly. Different
hierarchies exist, such as the Enzyme Commission [7] and the Gene
Ontology [5]. In [47], the hierarchical approach once again proves
better than the flat approach.

4.1.3 Challenges

One thing that LCN, LCPN and LCL all have in common is that the
final model is a combination of smaller classification models. These
components can be fine-tuned and adapted as necessary. However,
these approaches also suffer from drawbacks. For example, an error
made by a top-level classifier is propagated to lower levels in the tree
and cannot be corrected anymore.

Furthermore, most of these models assume mandatory leaf node
prediction. However, if a document is more general, for example a
survey or review paper, it does not fit in a leaf node, but should be
classified into an intermediary node. A solution to achieve this is
to start classification at the root node, set thresholds at intermediary
nodes and only continue classification if the threshold value is reached.
This value is usually a minimal classifier confidence, but can also be
an entropy measure of confidence scores over child nodes [58]. A
method to automatically compute thresholds was proposed by Ceci
and Malerba [14].

Using thresholds however also introduces another problem, namely
the blocking problem [79]. Blocking occurs during the testing phase if
a data sample is rejected by an intermediary classifier and thus not
reaches it associated expert classifier. For example, in Figure 4.2, if the
classifier at node B does not reach the threshold confidence, it will
not be passed down to the classifiers at leaf nodes B.1 and B.2. To
address this problem, three methods are suggested. The first method
is threshold reduction, which consists of lowering the threshold value
of the subtree classifier at a node. This results in passing more samples
to child nodes. The second method is to use restricted voting, which
consists of using the subtree classifier to link a node to its grand-
parent node. The idea is to allow more specialized classifiers access
to a data sample before it is rejected. The third and final method is
to use extended multiplicative thresholds, by recursively using the
multiplicative thresholds which only worked for hierarchies of two
levels [25]. To illustrate how these multiplicative thresholds function,
we give a small example. Given the tree in Figure 4.2 and a subset
of confidence scores of the classifiers at nodes cA = 0.7, cA.1 = .9,
cA.2 = 0.3, cA.3 = 0.5 for a data sample and a static threshold of
0.5. The data sample is classified as A.1, because 0.7 · 0.9 > 0.5. If the

4.2 methods 37

multiplicative confidence would have been lower than 0.5 at A.1, A.2
and A.3, the sample would be classified as A.

Another challenge these models have difficulty coping with is the
class inconsistency. In Figure 4.4 for example, the top classifier can
predict B, while the bottom classifier predicts A.1. Because A.1 is not
a child node of B, the final prediction is inconsistent with the tree
structure. To cope with this problem, a bottom-up strategy is proposed
[83]. Every leaf node classifier is evaluated. If the prediction at a leaf
node is True, the prediction at its ancestors is also set to True if it was
False to make the prediction consistent. This approach is more about
correcting mistakes, but in another approach the tree is pruned based
on document similarity to all documents and their classes, reducing
class inconsistency in the testing phase [89]. The authors report a
77.7% increase in classification performance at depth 5 of the Open
Directory Project.

4.2 methods

The methods of the experiment intended to answer research question
3 are described in this section. The LCPN approach was chosen and
implemented for the following reasons:

• The LCPN approach does not struggle as much with class hi-
erarchy inconsistency problems as LCN. The dataset was not
multi-labeled, so the natural multi-label strength of the LCN

approach was not required.

• LCL was not chosen, because it does not take any class hierarchy
into account.

• A global model is not modular. Modularity is an important as-
pect of the final system, because every classifier can be evaluated
individually and can be trained using the most distinctive fea-
tures of the corresponding subset of the data. This process can be
automated as well [85]. As shown in Section 2.2, the data is very
diverse and imbalanced, which requires different approaches to
achieve optimal classification performance.

The use of various feature inputs and classification methods were
explored in order to find the most suitable feature types and classifiers
for the classification of economic activity based on text in Chapter 3.
The use of tfidf vectors as features in combination with a linear classi-
fier trained using SGD of the MH loss function resulted in the highest
performance. Therefore, the classification pipelines of both the tradi-
tional “flat” classifier and the LCPN classification system consisted of
a tfidf feature extractor and a linear classifier trained using SGD of the
MH loss function. Both components are described in Chapter 3.

4.3 results 38

The flat classifier consist of a linear classifier trained using SGD of
the MH loss function which is trained to infer division labels from tfidf

vectors.
The LCPN classification model consists of multiple components:

• The section linear classifier trained using SGD of the MH loss
function based on tfidf vectors. The corpus of this tfidf vector
extractor contained the 50000 most occurring words in all of the
data.

• For every section, a linear classifier trained using SGD of the MH

loss function based on tfidf vectors. These classifiers were trained
using only data from the corresponding section, i.e. a classifier
for section A was trained using only data in division A.1, A.2
and A.3. The corpus of the tfidf vector extractor contained only
the 50000 most occurring words found in that section as well in
order to avoid non-representative texts for that section.

In order to answer the research question, namely if hierarchical
classification can achieve higher performance in this specific problem,
the “flat” classifier and the LCPN classification model are both trained
and evaluated on the same training and testing data. The results
are documented in Section 4.3. These results will yield insight in
how useful an LCPN classification model can be in economic activity
classification when compared to a regular “flat” classifier.

4.3 results

The results of the experiment regarding “flat” (non-hierarchical) versus
hierarchical classification are described in this section. In Table 4.1,
the accuracy and the macro weighted F1 score [84] of both the “flat”
and the hierarchical approaches to division classification are listed.
The accuracy indicates the percentage of correct classifications. The
macro weighted F1 score shows the performance in terms of precision
and recall for every class. The F1 score will be lower if the classifier
is biased toward a class, while the accuracy is not necessarily lower.
The hierarchical approach results in the highest performance with an
accuracy of 0.64, almost equal to 0.63, which is achieved when using
the “flat” approach. Full classification reports and confusion matrices
can be found in Appendix E. Confusion matrices for every component
of the LCPN classifier are included to be able to further investigate the
components of the LCPN classifier.

4.4 discussion

The difference in classification performance when using the “flat” or
the hierarchical approach is investigated in this chapter, which is

4.4 discussion 39

Approach Accuracy F1

“Flat” 0.63 0.63

Hierarchical 0.64 0.64

Table 4.1: “Flat” and hierarchical classifier accuracy and macro weighted F1
scores.

research question 3. The hypothesis for this research question was
that the hierarchical approach would achieve a higher classification
performance in terms of accuracy than the “flat” approach. In order
to test this hypothesis experimentally, a single division classifier was
trained and tested to find the performance for the flat approach. Next,
a system of classifiers according to the LCPN approach was trained and
tested for division classification. All classifiers were linear classifier
trained using SGD of the MH loss function and were based on tfidf

vectors, because these features and classifier resulted in the highest
performance in terms of both accuracy and macro weighted F1 score.
The experiments related to these findings are described in Chapter 3.
The performances were compared and the use of the LCPN approach
resulted in slightly higher performance than when using the “flat”
approach. This proves that the concept of hierarchical classification
generalizes from benchmark datasets to a real-life problem such as
economic activity classification for web pages. This result is in line
with most research done in hierarchical classification (further reading
in [74]). Most of the experiments described in this survey conclude
that hierarchical classification at least slightly improves classification
performance.

This project solely focussed on constructing a basic LCPN classifica-
tion model. This model used a toplevel classifier to select a sublevel
classifier. Therefore, the LCPN system is highly dependent on the
toplevel classifier. Possible improvements such as pruning of the tree
based on document similarity [89] and a bottom-up approach to cor-
rect mistakes made by the toplevel classifier [83] are described in the
background section of this chapter. The toplevel classifier has achieved
an accuracy of 0.70 for sections (see Chapter 3 and the LCPN division
classifier reached an accuracy of 0.64, which is only slightly lower.

Multiplicative classifier confidence based classification was explored
as well for the LCPN classification model. Every classifier prediction
includes a confidence, which is a probability. By multiplying the confi-
dence for a section with the confidence of a divisions in that section, a
multiplicative confidence is found. Once this action is performed for
all divisions, a final prediction, corresponding to the highest multi-
plicative confidence, can be extracted. Unfortunately, this approach
resulted in decreased performance when compared to only selecting
one division classifier with the section classifier. A possible reason

4.4 discussion 40

is that the classifier was always relatively certain about a prediction
(e.g. most class probabilities were zero), effectively nullifying the mul-
tiplicative confidence for those classes. Further investigation of this
phenomenon is required in order to confirm this explanation.

5
D E P L O Y M E N T

The deployment of the resulting hierarchical classifier is discussed in
this chapter. The first method is the implementation in DMAP, which is
monthly used to generate a prediction for all business and e-commerce
related domains in the .nl zone. These predictions are subsequently
used at SIDN to gain more insight in the zone. The second method is
exposure in the form of a web page. The main goal of this web page
is to utilize the knowledge of everyone interacting with the web page
to obtain additional labeled data.

5.1 zone prediction

This research project resulted, in addition to valuable insight, in a hi-
erarchical classification system. SIDN decided to take this classification
system into production due to its high performance compared to the
previous model and its ability to perform division classification. In
classification problems, it is also possible to predict the most proba-
ble n labels. However, generating a full probability distribution for
both sections and divisions per domain is computationally expensive.
Therefore, it was decided that classifier output would consist of two
components:

1. A probability distribution over the sections.

2. A probability distribution over the divisions in the most probable
section.

Only two classifier predictions are necessary to generate these two
outputs. Therefore, it is relatively cheap from a computational per-
spective, especially when compared to using all 16 classifiers in the
LCPN model. Still, this approach allows division classification.

Economic activity predictions were generated for all business and
e-commerce related domains in the .nl DNS zone. A comparison
between the predicted and actual distribution can be found for both
section and divisions in Figure 5.1 and Figure 5.2, respectively. In both
these figures, blue is the data distribution as provided by the CBS, the
actual data distribution. Orange is the data distribution as provided
by the classifier. Green is the difference between those distributions.
For example, section M in Figure 5.1 is the most underrepresented in
the .nl zone.

41

5.2 feedback website 42

A C F G H I J K L M N P Q R S
Section

0.05

0.00

0.05

0.10

0.15

0.20

Pe
rc

en
ta

ge

Predicted SBI section distribution in the .nl zone compared to actual distribution
Percentage of .nl zone
Percentage of businesses
delta

Figure 5.1: The data distribution as provided by the CBS (blue), the classifier
(orange) and the difference between those distributions (green).
For every section (x-axis) is indicated what percentage of the data
it occupies (y-axis).

5.2 feedback website

The classifier was exposed as a web application1 as well. This website
was designed to obtain new labeled data. Figure 5.3 shows a typical
usecase for this website. A screenshot of the functional part of the web
application is shown in Figure 5.4. First, the user is asked to enter an
URL. Once the user clicks the predict button, the text found on the
homepage of the corresponding domain is classified and the output
is shown to the user. Now, the user is asked to provide feedback.
The prediction can be either right or wrong. In the case of a faulty
prediction, the user is also asked to provide both the correct section
and the correct division. After completing the ReCaptcha challenge,
the user can click the send feedback button. Then the feedback is
registered and the user thanked for providing feedback. The user can
choose to exit after every action. Therefore, it is also possible to use
the web application without providing feedback.

1 https://webcola.sidnlabs.nl/

https://webcola.sidnlabs.nl/

5.2 feedback website 43

1
10

25
31

32
33

41
42

43
45

46
47

49
50

52
53

55
56

59
62

63
64

66
68

69
70

71
72

73
74

77
78

79
80

81
82

85
86

88
90

93
94

95
96

Di
vi

sio
n

0.
04

0.
02

0.
00

0.
02

0.
04

0.
06

0.
08

Percentage

Pr
ed

ict
ed

 S
BI

 d
iv

isi
on

 d
ist

rib
ut

io
n

in
 th

e
.n

l z
on

e
co

m
pa

re
d

to
 a

ct
ua

l d
ist

rib
ut

io
n

Pe
rc

en
ta

ge
 o

f .
nl

 zo
ne

Pe
rc

en
ta

ge
 o

f b
us

in
es

se
s

de
lta

Fi
gu

re
5
.2

:T
he

da
ta

di
st

ri
bu

tio
n

as
pr

ov
id

ed
by

th
e

C
BS

(b
lu

e)
,t

he
cl

as
si

fie
r

(o
ra

ng
e)

an
d

th
e

di
ff

er
en

ce
be

tw
ee

n
th

os
e

di
st

ri
bu

tio
ns

(g
re

en
).

Fo
r

ev
er

y
di

vi
si

on
(x

-a
xi

s)
is

in
di

ca
te

d
w

ha
t

pe
rc

en
ta

ge
of

th
e

da
ta

it
oc

cu
pi

es
(y

-a
xi

s)
.

5.2 feedback website 44

Start

Enter URL

Predict button

Correct Incorrect

Section feedback

Division feedback

ReCaptcha

Send feedback button

End

Figure 5.3: This figure illustrates the possible usecases of the web application.

5.2 feedback website 45

Figure 5.4: Screenshow of the functional part of the web application.

Part III

T H E D I S C U S S I O N

6
C O N C L U S I O N

Most more complex concepts for feature extraction, classification and
hierarchical classification result in increased performance in the lit-
erature. However, those concepts are usually only tested on a small
selection of benchmark datasets. This research project was aimed to
validate the use of those concepts using a real-life and ever-changing
dataset, namely the text found on domains in the .nl zone.

Three aspects of the economic activity classification for web pages
were investigated in this research project. The three main research
questions were answered:

1. The use of different features influences classification perfor-
mance. Using tfidf vectors as features resulted in the highest
classification performance.

2. The use of different classifiers affect performance. Using a lin-
ear classifier trained using SGD of the MH loss function based
on tfidf vectors as features resulted in the highest classification
performance.

3. Performance of a classification system can be slightly improved
by using a basic hierarchical classification model.

To conclude, more complicated features and classifiers do not guar-
antee increased classification performance. Furthermore, the perfor-
mance increase with hierarchical classification when tested using
benchmark datasets generalizes to a non-benchmark problem.

47

7
D I S C U S S I O N

This research project included a set of pilot experiments in order to
allow for an early identification of possible future problems and to
make an optimal selection of the data.

The first task was to get familiarized with the data itself in order to
identify possible problems such as imbalanced data early and make a
final data selection. The label distribution itself was found to be heavily
imbalanced, which was to be expected. The number of companies per
economic activity differs. As a countermeasure, class weights were
introduced in order to avoid classifier bias toward majority classes.
The label distribution was however found to be statistically similar
to the actual label distribution on both section and division level as
provided by the CBS. This means that any results found based on
the labeled domains in the .nl zone are expected to generalize to all
domains in the .nl zone.

The second task was to obtain additional labeled data. A name
and address based match between the KvK database and the domain
registration data was conducted. This match resulted in additional
labeled data, but after testing, this new data proved to contain too
much noise and only decreased classification performance. Therefore,
this data was disregarded.

The third task was to select the labels which were going to be
considered. This is an optimization problem, because the classifier
performance was to be maximized while still being informative, which
means keeping as many labels as possible. In order to maximize
performance, divisions with less than 4000 members (according to the
CBS) were removed under the pretense that those domains could be
manually labelled if required.

A limitation of the dataset itself is that it was (partly) labeled by
starting entrepreneurs. These persons do not know the SBI and can
therefore make mistakes when registering their business. It is also
possible that they decide to participate in another economic activity
after registering their business. This problem can be approached by
manually checking whether or not the listed economic activity is
correct by professionals. In this research project, several but far from
all domains and the corresponding economic activity were checked.
This check was passed successfully.

Three main research questions were investigated in this project:

1. How important is the usage of different features with regard
to classification performance in the economic activity classifica-
tion problem? The hypothesis was that the more complicated idf

48

discussion 49

weighted word embeddings would result in the highest perfor-
mance.

2. How does the use of different classifiers affect classification
performance? The hypothesis was that the RCNN [48] would
achieve the highest performance.

3. Can classification performance of the classification system be
improved by using hierarchical classification? The hypothesis
was that hierarchical classification would result in a higher per-
formance than default “flat” classification.

In the first experiment, the use of tfidf vectors and (idf weighted)
word embeddings is examined. Contrary to the hypothesis, the use of
tfidf vectors resulted in the highest classification performance. A limi-
tation emerged in this experiment: non NN classifiers could not handle
multi-dimensional data samples. Therefore, the two-dimensional (idf

weighted) word embeddings needed to be transformed to a single di-
mension. It is possible information was lost in this process. To account
for this loss, NN classifiers which could handle the two-dimensional
word embedding were trained in the second experiment.

In this experiment, tfidf vectors were used as input for various non-
NN classifiers. Word embeddings were used as input for NN classifiers.
Contrary to the hypothesis, the linear classifier trained using SGD of
the MH loss function outperformed all other classifiers in terms of both
accuracy and macro weighted F1 score. These two experiments show
that the use of more complicated methods do not guarantee increased
performance.

In the third experiment, these findings were combined to create a
LCPN (as identified in [74]) hierarchical classifier which was compared
to a single classifier, which is a “flat” classifier. The hypothesis was
correct: the hierarchical LCPN classifier slightly outperformed the “flat”
classifier, which was in line with most of the work summarized by
Silla and Freitas [74]. The LCPN classifier implemented was basic:
the section classifier selected a division classifier to provide a final
classification. Several improvements are possible to enhance the LCPN

classifier. Possible improvements include pruning of the tree [89] and
correcting the first classifier in a bottom-up fashion [83]. Further work
is required to analyze the effects of those improvements.

Several combinations of features and classifiers were not considered.
For example, the use of tfidf vectors combined with a RCNN is not
considered. The use of such a NN in hierarchical context is also not
considered, because it was already outperformed by the linear classi-
fier trained using SGD of the MH loss function in section classification
and hierarchical classification as in a LCPN heavily depends on the
highest level classifier. One thing all excluded experiments have in
common is that one component resulted in inferior performance.

discussion 50

In order to counteract data imbalance issues, class weights were
introduced. The use of data augmentation to circumvent this prob-
lem was not investigated. Consider for example the generation of
documents with a label according to the word distribution found in
the existing documents carrying that label. Such documents could
help to make a classifier more robust and less prone to error. SMOTE
[17] uses this concept to generate additional labeled data for minority
classes. Another possibility is to use balanced training batches. Further
work is required to analyze the value of such methods for this specific
problem.

This research project proved that the concept of hierarchical clas-
sification generalizes from benchmark datasets to a non-benchmark
dataset such as the text found on domains in the .nl zone in the
task of economic activity classification.Another valuable lesson can
be learned from both the feature related experiment and the classifier
experiment: more complicated methods do not guarantee increased
classification performance. Both these lessons can be considered for
any future experiments in both text and hierarchical classification.

The project itself was deemed a success: SIDN uses the LCPN classifier
in their monthly crawl of the .nl zone. It is also possible to interact
with the classifier to obtain live predictions for a domain of the user’s
choice1.

1 https://webcola.sidnlabs.nl

https://webcola.sidnlabs.nl

Part IV

A P P E N D I X

A
T E X T C L A S S I F I C AT I O N A P P L I C AT I O N S

News article classification is the task of determining the already ex-
isting category a news article belongs to. Because vast amounts of
news articles are written every day by many different organizations,
it is problematic to manually assign all news articles to the correct
category. Reuters-21578 is a popular benchmark dataset to test news
article classification methods (e.g. [24, 66]). An advantage of using
news collections to test text classification approaches is that news
articles will always appear in a category. This category can be used as
a label, eliminating the need to hand-label data.

Determining the sentiment or emotion expressed in a text is another
application of text classification. For example, human readers can
easily extract sentiment from movie review. A deep NN with recurrent
layers can achieve over 90% accuracy when predicting if a review is
positive or negative [90]. This classifier can be used to automatically
determine a star rating for a movie instead of being dependent on
individuals rating a movie without any other context. Sentiment anal-
ysis can also be performed in Twitter messages. For example, previous
work describes a method to predict a positive or a negative sentiment
given a query for Twitter messages [31]. The authors achieve a pre-
diction accuracy of 82.7% when using a Naive Bayes or Maximum
Entropy classifier and training on bigrams of words. The novelty in
this work lies in not using actual labeled data, but the use of emoti-
cons as noisy labels. The authors call this approach distant supervised
learning. Determining this sentiment by query term can be used by
e.g. companies who wish to monitor customer satisfaction. Another
popular sentiment analysis dataset is the SSTb dataset [75], which con-
tains movie reviews as well. These reviews are represented as fully
labeled parse trees annotated by three human judges. In the same
publication, the authors also use several (deep learning) algorithms
to analyse the sentiment of these reviews. This data is used by e.g.
Dos Santos and Gatti [23] to perform sentiment analysis. The authors
test their approach with both the SSTb and the STS datasets.

Document organization, similar to news article classification, is
the task of assigning a given document to the correct class. The 20

Newsgroups dataset [49] is a popular document collection for this
task. It consists, as the name suggests, of text messages of twenty
newsgroups. Each class contains about one thousand messages. The
dataset can be found and downloaded freely from the internet1. This

1 http://qwone.com/~jason/20Newsgroups/

52

http://qwone.com/~jason/20Newsgroups/

text classification applications 53

dataset is widely used as a benchmark dataset to test new or verify
older text classification approaches (e.g. [6, 29, 48]).

Document organization can also be performed in a more formal do-
main, namely patent classification. The international patent database
is growing continuously and the granting of a patent depends on
its similarity with other patents. Furthermore, patents are lengthy
and contain a high amount of professional language, which further
increases the effort required to manually classify the patent. These rea-
sons imply the need for an automated classification system, because
such a system will improve the workflow. In 2003, Fall et al. [27] intro-
duced a new labelled dataset of patents according to the International
Patent Classification (IPC) taxonomy, which consists of 451 subclasses
divided over 114 topclasses. The collection of patents is used by several
other researchers: in [82], several text mining techniques are explored
with relation to patent analysis.

As email arose as an efficient and economic method of commu-
nication, it unfortunately also became a more popular tool to send
unwanted texts. These texts are known as spam and generally range
from attempting to extract information to advertising a certain prod-
uct. Because separating those emails from regular emails can be a
cumbersome task, the need for an automatic classification system
became clear. For example, previous work describes a comparison of
classification methods, all with their own advantages and disadvan-
tages [92]. This research compares NN, SVM, naive Bayesian and J48

classifiers when employed for the email classification task based on
tfidf features. The authors found that the J48 classifier, which generates
a binary decision tree, performs best with an accuracy of 95.8 percent.

B
P I L O T E X P E R I M E N T S

b.1 stopwords

Set of removed words: {’some’, ’couldn’, ’for’, ’wouldn’, ’or’, ’zijn’,
’between’, ’en’, ’m’, ’zal’, ’waren’, ’re’, ’such’, "you’ll", ’at’, "that’ll",
’heb’, ’through’, ’ook’, ’we’, ’niet’, ’uit’, ’itself’, ’wie’, ’off’, ’more’,
’herself’, "aren’t", ’voor’, ’who’, ’but’, ’no’, ’by’, ’myself’, ’whom’, ’je’,
’that’, "shan’t", ’all’, "hasn’t", ’zo’, ’zonder’, ’altijd’, ’being’, ’other’,
’zij’, ’meer’, ’deze’, ’about’, ’s’, "doesn’t", ’haven’, ’she’, ’with’, "won’t",
’any’, ’hun’, ’you’, ’and’, ’het’, ’those’, "mightn’t", ’each’, ’u’, ’werd’,
’doen’, ’tot’, ’door’, ’ze’, ’yourself’, ’wil’, ’after’, ’not’, ’what’, ’the’,
’should’, ’alles’, ’during’, ’tegen’, ’against’, ’down’, ’their’, ’an’, ’om-
dat’, ’mustn’, ’our’, ’be’, ’too’, ’had’, ’when’, ’am’, ’weren’, ’it’, ’na’,
’into’, ’dat’, ’heeft’, ’haar’, ’wezen’, ’wordt’, ’doesn’, ’dit’, ’zelf’, "you’d",
’he’, ’ve’, ’been’, ’om’, ’are’, ’were’, ’why’, ’out’, ’hasn’, ’toen’, ’zou’,
’above’, "wouldn’t", ’of’, ’own’, ’have’, "mustn’t", ’zich’, ’onder’, ’them-
selves’, ’very’, ’hers’, ’als’, ’so’, ’can’, ’where’, ’nor’, ’wasn’, ’der’, ’toch’,
’ourselves’, ’hij’, ’kon’, ’niets’, ’was’, ’hadn’, "don’t", ’daar’, ’ge’, ’nog’,
"weren’t", ’a’, ’once’, ’up’, ’doch’, ’as’, ’geweest’, ’nu’, "wasn’t", ’o’,
’then’, ’maar’, ’under’, ’there’, ’ain’, "hadn’t", "it’s", ’hoe’, ’which’,
’than’, "haven’t", ’hebben’, ’dan’, ’y’, ’een’, ’its’, ’t’, ’want’, ’now’, ’wat’,
’here’, ’his’, "you’ve", ’moet’, ’men’, ’geen’, ’yourselves’, ’both’, ’aren’,
’him’, ’just’, ’needn’, ’iemand’, ’they’, ’to’, ’al’, ’will’, ’on’, ’do’, ’te’,
’ll’, ’from’, ’andere’, ’only’, "should’ve", ’kunnen’, "she’s", ’if’, ’did’,
’having’, ’ben’, "couldn’t", ’mijn’, ’my’, ’aan’, ’ons’, ’himself’, ’theirs’,
’these’, ’below’, ’reeds’, ’while’, ’isn’, ’ja’, ’won’, ’op’, ’yours’, ’is’, ’don’,
’de’, ’before’, ’same’, ’ours’, ’in’, ’eens’, "shouldn’t", ’hem’, ’them’,
’how’, "isn’t", ’shan’, ’again’, ’van’, ’has’, ’die’, ’few’, ’mightn’, ’most’,
’this’, "you’re", ’mij’, ’does’, ’bij’, ’because’, ’her’, "needn’t", ’worden’,
’until’, ’i’, ’shouldn’, ’kan’, ’over’, ’er’, ’hier’, ’ma’, ’veel’, "didn’t", ’dus’,
’naar’, ’doing’, ’iets’, ’d’, ’me’, ’ik’, ’further’, ’didn’, ’uw’, ’your’, ’met’}.

54

B.2 data distributions 55

b.2 data distributions

A B C D E F G H I J K L M N O P Q R S T U
Section

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Pe
rc

en
ta

ge
 o

f t
he

 (l
ab

el
ed

) d
at

a

SBI sections distribution in labelled data compared to actual distribution
Labeled data
CBS data

Figure B.1: Similarity between the labeled data distribution and the actual
distribution on section level. On the x-axis, the sections are listed.
On the y-axis is shown what portion of the data carries that
section label.

B.2 data distributions 56

1
2

3
6

8
9

10
11

12
13

14
15

16
17

18
19

20
21

22
23

24
25

26
27

28
29

30
31

32
33

35
36

37
38

39
41

42
43

45
46

47
49

50
51

52
53

55
56

58
59

60
61

62
63

64
65

66
68

69
70

71
72

73
74

75
77

78
79

80
81

82
84

85
86

87
88

90
91

92
93

94
95

96
97

98
99

Di
vi

sio
n

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

0.
07

0.
08

Percentage of the (labeled) data

SB
I d

iv
isi

on
s d

ist
rib

ut
io

n
in

 la
be

lle
d

da
ta

 c
om

pa
re

d
to

 a
ct

ua
l d

ist
rib

ut
io

n
La

be
le

d
da

ta
CB

S
da

ta

Fi
gu

re
B.

2
:S

im
ila

ri
ty

be
tw

ee
n

th
e

la
be

le
d

da
ta

di
st

ri
bu

ti
on

an
d

th
e

ac
tu

al
di

st
ri

bu
ti

on
on

di
vi

si
on

le
ve

l.
O

n
th

e
x-

ax
is

,t
he

di
vi

si
on

s
ar

e
lis

te
d.

O
n

th
e

y-
ax

is
is

sh
ow

n
w

ha
t

po
rt

io
n

of
th

e
da

ta
ca

rr
ie

s
th

at
di

vi
si

on
la

be
l.

B.2 data distributions 57

0 20000 40000 60000 80000
Registrant identifier

100

101

102

103

104

105

Nu
m

be
r o

f r
eg

ist
er

ed
 d

om
ai

ns

Number of registered domains per registrant

Figure B.3: Illustration of how many domains are typically registered per
registrant.

B.3 match data evaluation 58

b.3 match data evaluation

0.0 0.2 0.4 0.6 0.8 1.0
Predicted label

0.0

0.2

0.4

0.6

0.8

1.0
Tr

ue
 la

be
l

A C F G H I J K L M N P Q R S

A
C
F
G
H
I
J

K
L
M
N
P
Q
R
S

Kvkdrs only

A C F G H I J K L M N P Q R S

A
C
F
G
H
I
J

K
L
M
N
P
Q
R
S

Pretrain

A C F G H I J K L M N P Q R S

A
C
F
G
H
I
J

K
L
M
N
P
Q
R
S

No kvkdrs

A C F G H I J K L M N P Q R S

A
C
F
G
H
I
J

K
L
M
N
P
Q
R
S

Merge

A C F G H I J K L M N P Q R S

A
C
F
G
H
I
J

K
L
M
N
P
Q
R
S

Train kvkdrs, test labeled

A C F G H I J K L M N P Q R S

A
C
F
G
H
I
J

K
L
M
N
P
Q
R
S

Train labeled, test kvkdrs 0.0

0.2

0.4

0.6

0.8

Figure B.4: Normalized confusion matrices for the classifiers which are used
to evaluate the new match data. The confusion matrices are
normalized on the true labels. On the x-axis, the predicted labels
are listed and on every y-axis, the true labels are listed, both for
every setting. A more yellow square at (x,y) indicates that the
classifier often predicts label x when a true label is y.

B.3 match data evaluation 59

precision recall f1-score support

A 0.229167 0.440000 0.301370 25

C 0.423077 0.415094 0.419048 53

F 0.507576 0.577586 0.540323 116

G 0.606498 0.579310 0.592593 290

H 0.508772 0.630435 0.563107 46

I 0.408163 0.555556 0.470588 36

J 0.290598 0.369565 0.325359 92

K 0.375000 0.262391 0.308748 343

L 0.277778 0.454545 0.344828 55

M 0.497778 0.320000 0.389565 350

N 0.288889 0.448276 0.351351 87

P 0.266667 0.400000 0.320000 20

Q 0.433333 0.684211 0.530612 38

R 0.142857 0.409091 0.211765 22

S 0.166667 0.142857 0.153846 14

accuracy 0.417139 1587

macro avg 0.361521 0.445928 0.388207 1587

weighted avg 0.440002 0.417139 0.417270 1587

Table B.1: New match data only.

B.3 match data evaluation 60

precision recall f1-score support

A 0.276316 0.567568 0.371681 37

C 0.442254 0.620553 0.516447 253

F 0.765778 0.853125 0.807095 640

G 0.749703 0.762364 0.755981 1658

H 0.702326 0.848315 0.768448 178

I 0.646048 0.820961 0.723077 229

J 0.721081 0.695516 0.708068 959

K 0.465217 0.443983 0.454352 241

L 0.529801 0.695652 0.601504 115

M 0.790230 0.626067 0.698634 1757

N 0.610022 0.563380 0.585774 497

P 0.673973 0.691011 0.682386 712

Q 0.769366 0.742566 0.755728 1177

R 0.561848 0.719466 0.630962 524

S 0.756294 0.717973 0.736636 1046

accuracy 0.703881 10023

macro avg 0.630684 0.691233 0.653118 10023

weighted avg 0.713884 0.703881 0.705335 10023

Table B.2: Pretrain with new match data.

B.3 match data evaluation 61

precision recall f1-score support

A 0.298507 0.540541 0.384615 37

C 0.440111 0.624506 0.516340 253

F 0.774148 0.851562 0.811012 640

G 0.747066 0.767793 0.757287 1658

H 0.704225 0.842697 0.767263 178

I 0.660839 0.825328 0.733981 229

J 0.717811 0.697602 0.707562 959

K 0.467249 0.443983 0.455319 241

L 0.535948 0.713043 0.611940 115

M 0.790043 0.623221 0.696787 1757

N 0.617450 0.555332 0.584746 497

P 0.666223 0.703652 0.684426 712

Q 0.767951 0.745115 0.756361 1177

R 0.574018 0.725191 0.640809 524

S 0.758865 0.716061 0.736842 1046

accuracy 0.705477 10023

macro avg 0.634697 0.691708 0.656353 10023

weighted avg 0.714712 0.705477 0.706550 10023

Table B.3: No new match data.

B.3 match data evaluation 62

precision recall f1-score support

A 0.342105 0.629032 0.443182 62

C 0.427873 0.571895 0.489510 306

F 0.767857 0.797351 0.782326 755

G 0.735928 0.717804 0.726753 1949

H 0.651079 0.804444 0.719682 225

I 0.611413 0.852273 0.712025 264

J 0.668577 0.666667 0.667620 1050

K 0.417450 0.532534 0.468021 584

L 0.467890 0.600000 0.525773 170

M 0.769529 0.566002 0.652257 2106

N 0.629630 0.554031 0.589416 583

P 0.626886 0.624317 0.625599 732

Q 0.747755 0.753289 0.750512 1216

R 0.545455 0.702011 0.613909 547

S 0.728780 0.704717 0.716547 1060

accuracy 0.667844 11609

macro avg 0.609214 0.671758 0.632209 11609

weighted avg 0.682760 0.667844 0.670270 11609

Table B.4: Merge of new match data with the labeled data.

B.3 match data evaluation 63

precision recall f1-score support

A 0.139618 0.289604 0.188406 404

C 0.353197 0.431269 0.388348 4714

F 0.644141 0.767511 0.700435 6396

G 0.615192 0.680417 0.646163 16581

H 0.608655 0.719288 0.659363 1799

I 0.451317 0.689414 0.545517 2286

J 0.416511 0.398255 0.407178 10084

K 0.084084 0.304797 0.131807 2418

L 0.280059 0.657689 0.392839 1151

M 0.512418 0.456198 0.482677 17819

N 0.445919 0.453282 0.449571 4966

P 0.463880 0.481669 0.472607 7119

Q 0.674421 0.458779 0.546082 12069

R 0.339899 0.277669 0.305648 5593

S 0.666857 0.222881 0.334097 10463

accuracy 0.480946 103862

macro avg 0.446411 0.485915 0.443383 103862

weighted avg 0.525310 0.480946 0.485303 103862

Table B.5: Train with new match data, test with labeled data.

B.4 selection of sections and divisions 64

precision recall f1-score support

A 0.259939 0.330739 0.291096 257

C 0.247981 0.470694 0.324829 1109

F 0.581784 0.535959 0.557932 1168

G 0.607959 0.489768 0.542501 2932

H 0.390421 0.563941 0.461407 477

I 0.448077 0.656338 0.532571 355

J 0.121386 0.449373 0.191140 1037

K 0.392793 0.124893 0.189524 3491

L 0.417122 0.411131 0.414105 557

M 0.586569 0.314752 0.409674 3552

N 0.471642 0.359909 0.408269 878

P 0.298893 0.395122 0.340336 205

Q 0.482474 0.585000 0.528814 400

R 0.154374 0.352941 0.214797 255

S 0.131661 0.304348 0.183807 138

accuracy 0.367795 16811

macro avg 0.372872 0.422994 0.372720 16811

weighted avg 0.457321 0.367795 0.377850 16811

Table B.6: Train with labeled data, test with new match data.

b.4 selection of sections and divisions

Set of removed sections: {’O’, ’T’, ’D’, ’U’, ’B’, ’E’}.
Set of removed divisions:{2, 3, 6, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19,
20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 35, 36, 37, 38, 39, 51, 58, 60, 61, 65,
75, 84, 87, 91, 92, 97, 98, 99}.

B.4 selection of sections and divisions 65

Code Description Number of labeled domains

A Landbouw, bosbouw en vis-
serij

370

C Industrie 2531

F Bouwnijverheid 6396

G Groot- en detailhandel;
reparatie van auto’s

16581

H Vervoer en opslag 1778

I Logies-, maaltijd- en
drankverstrekking

2286

J Informatie en communicatie 9582

K Financiële instellingen 2409

L Verhuur van en handel in on-
roerend goed

1151

M Advisering, onderzoek en
overige specialistisc...

17574

N Verhuur van roerende goed-
eren en overige zakel...

4964

P Onderwijs 7118

Q Gezondheids- en welzijn-
szorg

11777

R Cultuur, sport en recreatie 5244

S Overige dienstverlening 10461

Table B.7: Overview of section representation in the dataset.

Code Description Number of labeled domains

1 Landbouw, jacht en dienstver-
lening voor de lan...

370

10 Vervaardiging van voed-
ingsmiddelen

394

25 Vervaardiging van producten
van metaal (geen m...

738

31 Vervaardiging van meubels 438

32 Vervaardiging van overige
goederen

482

33 Reparatie en installatie van
machines en appar...

479

Continued on next page

B.4 selection of sections and divisions 66

Table B.8 – continued from previous page

Code Description Number of labeled domains

41 Algemene burgerlijke en
utiliteitsbouw en proj...

2631

42 Grond-, water- en wegen-
bouw (geen grondverzet)

148

43 Gespecialiseerde werkza-
amheden in de bouw

3617

45 Handel in en reparatie van
auto’s, motorfietse...

2363

46 Groothandel en handelsbe-
middeling (niet in aut...

8027

47 Detailhandel (niet in auto’s) 6191

49 Vervoer over land 1079

50 Vervoer over water 65

52 Opslag en dienstverlening
voor vervoer

460

53 Post en koeriers 174

55 Logiesverstrekking 605

56 Eet- en drinkgelegenheden 1681

59 Productie en distributie van
films en televisi...

753

62 Dienstverlenende activiteiten
op het gebied va...

6844

63 Dienstverlenende activiteiten
op het gebied va...

1985

64 Financiële instellingen (geen
verzekeringen en...

1451

66 Overige financiële dienstver-
lening

958

68 Verhuur van en handel in on-
roerend goed

1151

69 Rechtskundige dienstverlen-
ing, accountancy, be...

2284

70 Holdings (geen financiële),
concerndiensten bi...

6484

71 Architecten, ingenieurs en
technisch ontwerp e...

2739

72 Speur- en ontwikkelingswerk 313

Continued on next page

B.4 selection of sections and divisions 67

Table B.8 – continued from previous page

Code Description Number of labeled domains

73 Reclame en marktonderzoek 2561

74 Industrieel ontwerp en vor-
mgeving, fotografie,...

3193

77 Verhuur en lease van auto’s,
consumentenartike...

1178

78 Arbeidsbemiddeling, uitzend-
bureaus en personee...

797

79 Reisbemiddeling, reisorgan-
isatie, toeristische...

622

80 Beveiliging en opsporing 232

81 Facility management, reinig-
ing en landschapsve...

1129

82 Overige zakelijke dienstver-
lening

1006

85 Onderwijs 7118

86 Gezondheidszorg 8163

88 Maatschappelijke dienstver-
lening zonder overna...

3614

90 Kunst 3624

93 Sport en recreatie 1620

94 Levensbeschouwelijke en poli-
tieke organisaties...

4682

95 Reparatie van computers en
consumentenartikelen

832

96 Wellness en overige dienstver-
lening; uitvaartb...

4947

Table B.8: Overview of division representation in the dataset.

C
F E AT U R E T Y P E S A N D C L A S S I F I E R P E R F O R M A N C E

c.1 classification reports

Section precision recall f1-score support

A 0.322034 0.513514 0.395833 37

C 0.456647 0.624506 0.527546 253

F 0.778094 0.854688 0.814594 640

G 0.752688 0.759952 0.756303 1658

H 0.678571 0.853933 0.756219 178

I 0.648276 0.820961 0.724470 229

J 0.705699 0.710115 0.707900 959

K 0.463519 0.448133 0.455696 241

L 0.529801 0.695652 0.601504 115

M 0.795339 0.621514 0.697764 1757

N 0.610989 0.559356 0.584034 497

P 0.666220 0.698034 0.681756 712

Q 0.770318 0.740867 0.755305 1177

R 0.568452 0.729008 0.638796 524

S 0.753000 0.719885 0.736070 1046

accuracy 0.705078 10023

macro avg 0.633310 0.690008 0.655586 10023

weighted avg 0.714319 0.705078 0.706085 10023

Table C.1: tfidf vectors.

68

C.1 classification reports 69

Section precision recall f1-score support

A 0.072519 0.513514 0.127090 37

C 0.403727 0.513834 0.452174 253

F 0.663473 0.865625 0.751186 640

G 0.727734 0.606152 0.661402 1658

H 0.608108 0.758427 0.675000 178

I 0.553571 0.812227 0.658407 229

J 0.665868 0.579771 0.619844 959

K 0.446809 0.348548 0.391608 241

L 0.294964 0.713043 0.417303 115

M 0.751048 0.509960 0.607458 1757

N 0.310757 0.627767 0.415723 497

P 0.763466 0.457865 0.572432 712

Q 0.689811 0.776551 0.730616 1177

R 0.506173 0.547710 0.526123 524

S 0.750000 0.608031 0.671595 1046

accuracy 0.610795 10023

macro avg 0.547202 0.615935 0.551864 10023

weighted avg 0.661526 0.610795 0.620951 10023

Table C.2: Average word embeddings.

C.1 classification reports 70

precision recall f1-score support

A 0.081395 0.567568 0.142373 37

C 0.473684 0.284585 0.355556 253

F 0.736446 0.764062 0.750000 640

G 0.693520 0.238842 0.355316 1658

H 0.642857 0.707865 0.673797 178

I 0.556034 0.563319 0.559653 229

J 0.550586 0.539103 0.544784 959

K 0.271186 0.398340 0.322689 241

L 0.445545 0.391304 0.416667 115

M 0.550733 0.512806 0.531093 1757

N 0.350427 0.494970 0.410342 497

P 0.748538 0.359551 0.485769 712

Q 0.493441 0.830926 0.619183 1177

R 0.358787 0.654580 0.463514 524

S 0.556503 0.499044 0.526210 1046

accuracy 0.512521 10023

macro avg 0.500646 0.520458 0.477130 10023

weighted avg 0.564307 0.512521 0.505396 10023

Table C.3: Average word embeddings with tfidf weighting.

C.2 confusion matrices 71

c.2 confusion matrices

0.0 0.2 0.4 0.6 0.8 1.0
Predicted label

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 la
be

l

A C F G H I J K L M N P Q R S

A
C
F
G
H
I
J

K
L
M
N
P
Q
R
S

Tfidf

A C F G H I J K L M N P Q R S

A
C
F
G
H
I
J

K
L
M
N
P
Q
R
S

Padded wordvectors

A C F G H I J K L M N P Q R S

A
C
F
G
H
I
J

K
L
M
N
P
Q
R
S

Average wordvectors

A C F G H I J K L M N P Q R S

A
C
F
G
H
I
J

K
L
M
N
P
Q
R
S

Average wordvectors with tfidf weighting

0.0

0.2

0.4

0.6

Figure C.1: Confusion matrices for the use of different features. The confu-
sion matrices are normalized on the true labels. On the x-axis,
the predicted labels are listed and on every y-axis, the true labels
are listed, both for every setting. A more yellow square at (x,y)
indicates that the classifier often predicts label x when a true
label is y.

D
P E R F O R M A N C E O F T H E C L A S S I F I E R S

d.1 classification reports

Section precision recall f1-score support

A 0.238636 0.567568 0.336000 37

C 0.460606 0.600791 0.521441 253

F 0.772404 0.848437 0.808637 640

G 0.737959 0.776236 0.756614 1658

H 0.652582 0.780899 0.710997 178

I 0.645161 0.873362 0.742115 229

J 0.699248 0.678832 0.688889 959

K 0.585106 0.456432 0.512821 241

L 0.546763 0.660870 0.598425 115

M 0.774608 0.618099 0.687559 1757

N 0.643026 0.547284 0.591304 497

P 0.636243 0.675562 0.655313 712

Q 0.755725 0.757009 0.756367 1177

R 0.563877 0.732824 0.637344 524

S 0.771368 0.690249 0.728557 1046

accuracy 0.699890 10023

macro avg 0.632221 0.684297 0.648826 10023

weighted avg 0.709068 0.699890 0.700458 10023

Table D.1: SGD (MH).

72

D.1 classification reports 73

Section precision recall f1-score support

A 0.125628 0.675676 0.211864 37

C 0.398496 0.628458 0.487730 253

F 0.717105 0.851562 0.778571 640

G 0.766408 0.655006 0.706341 1658

H 0.547893 0.803371 0.651481 178

I 0.559459 0.903930 0.691152 229

J 0.671306 0.653806 0.662441 959

K 0.506977 0.452282 0.478070 241

L 0.396313 0.747826 0.518072 115

M 0.778400 0.553785 0.647157 1757

N 0.600877 0.551308 0.575026 497

P 0.626807 0.669944 0.647658 712

Q 0.729575 0.758709 0.743857 1177

R 0.545588 0.708015 0.616279 524

S 0.751136 0.631931 0.686397 1046

accuracy 0.662077 10023

macro avg 0.581465 0.683041 0.606806 10023

weighted avg 0.689929 0.662077 0.667000 10023

Table D.2: SGD (SVM).

D.1 classification reports 74

Section precision recall f1-score support

A 0.273973 0.540541 0.363636 37

C 0.435013 0.648221 0.520635 253

F 0.778102 0.832812 0.804528 640

G 0.742443 0.740651 0.741546 1658

H 0.713542 0.769663 0.740541 178

I 0.670103 0.851528 0.750000 229

J 0.690096 0.675704 0.682824 959

K 0.469636 0.481328 0.475410 241

L 0.581395 0.652174 0.614754 115

M 0.777361 0.590211 0.670980 1757

N 0.581028 0.591549 0.586241 497

P 0.624843 0.699438 0.660040 712

Q 0.767296 0.725573 0.745852 1177

R 0.543018 0.734733 0.624493 524

S 0.752303 0.702677 0.726644 1046

accuracy 0.690312 10023

macro avg 0.626677 0.682454 0.647208 10023

weighted avg 0.702933 0.690312 0.692269 10023

Table D.3: LR.

D.1 classification reports 75

Section precision recall f1-score support

A 0.220000 0.594595 0.321168 37

C 0.465190 0.581028 0.516696 253

F 0.767988 0.817187 0.791824 640

G 0.685959 0.772014 0.726447 1658

H 0.735955 0.735955 0.735955 178

I 0.624606 0.864629 0.725275 229

J 0.670011 0.626694 0.647629 959

K 0.638710 0.410788 0.500000 241

L 0.525547 0.626087 0.571429 115

M 0.735719 0.608423 0.666044 1757

N 0.621687 0.519115 0.565789 497

P 0.646091 0.661517 0.653713 712

Q 0.746924 0.722175 0.734341 1177

R 0.488312 0.717557 0.581144 524

S 0.748565 0.623327 0.680230 1046

accuracy 0.673351 10023

macro avg 0.621418 0.658739 0.627846 10023

weighted avg 0.684951 0.673351 0.673994 10023

Table D.4: SGD (LR).

D.1 classification reports 76

Section precision recall f1-score support

A 0.122449 0.162162 0.139535 37

C 0.254613 0.272727 0.263359 253

F 0.582931 0.565625 0.574148 640

G 0.545779 0.553679 0.549701 1658

H 0.588235 0.561798 0.574713 178

I 0.558559 0.541485 0.549889 229

J 0.475584 0.467153 0.471331 959

K 0.314410 0.298755 0.306383 241

L 0.433628 0.426087 0.429825 115

M 0.456573 0.442800 0.449581 1757

N 0.334783 0.309859 0.321839 497

P 0.485753 0.502809 0.494134 712

Q 0.527592 0.536109 0.531816 1177

R 0.371025 0.400763 0.385321 524

S 0.484449 0.491396 0.487897 1046

accuracy 0.478200 10023

macro avg 0.435757 0.435547 0.435298 10023

weighted avg 0.478682 0.478200 0.478304 10023

Table D.5: DT.

D.1 classification reports 77

Section precision recall f1-score support

A 0.500000 0.324324 0.393443 37

C 0.468421 0.351779 0.401806 253

F 0.641809 0.820312 0.720165 640

G 0.646455 0.797346 0.714016 1658

H 0.671795 0.735955 0.702413 178

I 0.596386 0.864629 0.705882 229

J 0.669834 0.588113 0.626319 959

K 0.766129 0.394191 0.520548 241

L 0.615385 0.626087 0.620690 115

M 0.672120 0.561184 0.611663 1757

N 0.672727 0.372233 0.479275 497

P 0.621551 0.664326 0.642227 712

Q 0.677009 0.723025 0.699260 1177

R 0.434119 0.597328 0.502811 524

S 0.723977 0.591778 0.651236 1046

accuracy 0.642023 10023

macro avg 0.625181 0.600841 0.599450 10023

weighted avg 0.649798 0.642023 0.636831 10023

Table D.6: RF.

D.1 classification reports 78

Section precision recall f1-score support

A 0.186441 0.297297 0.229167 37

C 0.295597 0.557312 0.386301 253

F 0.786585 0.806250 0.796296 640

G 0.715951 0.703860 0.709854 1658

H 0.623318 0.780899 0.693267 178

I 0.559748 0.777293 0.650823 229

J 0.644906 0.679875 0.661929 959

K 0.402490 0.402490 0.402490 241

L 0.416667 0.608696 0.494700 115

M 0.759653 0.548662 0.637145 1757

N 0.510549 0.486922 0.498455 497

P 0.625538 0.612360 0.618879 712

Q 0.741176 0.695837 0.717791 1177

R 0.456311 0.627863 0.528514 524

S 0.688912 0.641491 0.664356 1046

accuracy 0.641724 10023

macro avg 0.560923 0.615140 0.579331 10023

weighted avg 0.662533 0.641724 0.646357 10023

Table D.7: RNN.

D.1 classification reports 79

Section precision recall f1-score support

A 0.260870 0.486486 0.339623 37

C 0.381546 0.604743 0.467890 253

F 0.763869 0.839063 0.799702 640

G 0.745383 0.681544 0.712035 1658

H 0.627193 0.803371 0.704433 178

I 0.649123 0.807860 0.719844 229

J 0.673695 0.699687 0.686445 959

K 0.465517 0.448133 0.456660 241

L 0.483221 0.626087 0.545455 115

M 0.758696 0.595902 0.667517 1757

N 0.584906 0.561368 0.572895 497

P 0.561983 0.764045 0.647619 712

Q 0.786008 0.649108 0.711028 1177

R 0.547078 0.643130 0.591228 524

S 0.714840 0.704589 0.709677 1046

accuracy 0.670957 10023

macro avg 0.600262 0.661008 0.622137 10023

weighted avg 0.687260 0.670957 0.673680 10023

Table D.8: RCNN.

D.2 confusion matrices 80

d.2 confusion matrices

0.0 0.2 0.4 0.6 0.8 1.0
Predicted label

0.0

0.2

0.4

0.6

0.8

1.0
Tr

ue
 la

be
l

A C F G H I J K L M N P Q R S

A
C
F
G
H
I
J

K
L
M
N
P
Q
R
S

SGD (MH)

A C F G H I J K L M N P Q R S

A
C
F
G
H
I
J

K
L
M
N
P
Q
R
S

SGD (SVM)

A C F G H I J K L M N P Q R S

A
C
F
G
H
I
J

K
L
M
N
P
Q
R
S

LR

A C F G H I J K L M N P Q R S

A
C
F
G
H
I
J

K
L
M
N
P
Q
R
S

SGD (LR)

A C F G H I J K L M N P Q R S

A
C
F
G
H
I
J

K
L
M
N
P
Q
R
S

DecTree

A C F G H I J K L M N P Q R S

A
C
F
G
H
I
J

K
L
M
N
P
Q
R
S

RF
0.0

0.2

0.4

0.6

0.8

Figure D.1: Confusion matrices for different classifiers.

0.0 0.2 0.4 0.6 0.8 1.0
Predicted label

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 la
be

l

A C F G H I J K L M N P Q R S

A
C
F
G
H
I
J

K
L
M
N
P
Q
R
S

RCNN

A C F G H I J K L M N P Q R S

A
C
F
G
H
I
J

K
L
M
N
P
Q
R
S

RNN

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure D.2: Confusion matrices of the RCNN and RNN.

D.3 neural network configuration 81

d.3 neural network configuration

Layer Output shape Activation
(see table
D.10)

Remarks

Document
input

(None, 300) Identity Document as integer
sequence. These in-
tegers correspond to
entries in the embed-
ding matrix.

Left context
input

(None, 300) Identity Left context as inte-
ger sequence.

Right con-
text input

(None, 300) Identity Right context as inte-
ger sequence.

Embedding (None, None,
300)

None Not trainable. Em-
bedding matrix of
shape (50000, 300).
Used to obtain word
embeddings by inte-
ger indices.

Document
LSTM

(None, None,
hidden1)

Tanh

Left context
LSTM

(None, None,
hidden1)

Tanh

Right con-
text LSTM

(None, None,
hidden1)

Tanh

Concatenate (None, None,
3· hidden1)

Identity Concatenates Docu-
ment, Left context
and Right context
LSTM layers

Convolution
(1D)

(None, None,
hidden2)

Tanh Semantic layer

Max pool-
ing

(None, hid-
den2)

Identity Semantic pooling

Dense (None, 20) Softmax Output layer

Table D.9: RCNN layout.

D.3 neural network configuration 82

Type Function Remarks

Identity a(y) = y No activation function.

Tanh a(y) = ey−e−y

ey+e−y

Softmax a(y) = eyi∑
j e

yj Converts outputs to probability distribution.

Table D.10: Activation functions.

E
“ F L AT ” V E R S U S H I E R A R C H I C A L C L A S S I F I C AT I O N

e.1 classification reports

Division precision recall f1-score support

1 0.229885 0.540541 0.322581 37

10 0.319149 0.769231 0.451128 39

25 0.421488 0.689189 0.523077 74

31 0.260870 0.681818 0.377358 44

32 0.314815 0.708333 0.435897 48

33 0.241379 0.583333 0.341463 48

41 0.686508 0.657795 0.671845 263

42 0.300000 0.800000 0.436364 15

43 0.692308 0.696133 0.694215 362

45 0.756554 0.855932 0.803181 236

46 0.683241 0.462017 0.551263 803

47 0.640351 0.589661 0.613961 619

49 0.707317 0.805556 0.753247 108

50 0.500000 0.428571 0.461538 7

52 0.462687 0.673913 0.548673 46

53 0.619048 0.764706 0.684211 17

55 0.526882 0.803279 0.636364 61

56 0.640394 0.773810 0.700809 168

59 0.381944 0.733333 0.502283 75

62 0.723958 0.608759 0.661380 685

63 0.587097 0.457286 0.514124 199

64 0.308642 0.172414 0.221239 145

66 0.610169 0.750000 0.672897 96

68 0.584507 0.721739 0.645914 115

69 0.694545 0.837719 0.759443 228

70 0.687773 0.485362 0.569106 649

71 0.570423 0.591241 0.580645 274

72 0.160494 0.419355 0.232143 31

Continued on next page

83

E.1 classification reports 84

Table E.1 – continued from previous page

Division precision recall f1-score support

73 0.541176 0.539062 0.540117 256

74 0.795349 0.536050 0.640449 319

77 0.424051 0.567797 0.485507 118

78 0.476562 0.762500 0.586538 80

79 0.456311 0.758065 0.569697 62

80 0.363636 0.869565 0.512821 23

81 0.692308 0.796460 0.740741 113

82 0.329114 0.257426 0.288889 101

85 0.704180 0.615169 0.656672 712

86 0.781167 0.721814 0.750318 816

88 0.604863 0.551247 0.576812 361

90 0.619718 0.607735 0.613668 362

93 0.543210 0.814815 0.651852 162

94 0.619145 0.649573 0.633994 468

95 0.466667 0.590361 0.521277 83

96 0.845070 0.848485 0.846774 495

accuracy 0.626160 0.626160 0.626160 0.62616

macro avg 0.535794 0.648799 0.567784 10023

weighted avg 0.650879 0.626160 0.628698 10023

Table E.1: “Flat” classification approach.

Division precision recall f1-score support

1 0.289855 0.540541 0.377358 37

10 0.479167 0.589744 0.528736 39

25 0.459184 0.608108 0.523256 74

31 0.375000 0.613636 0.465517 44

32 0.432432 0.666667 0.524590 48

33 0.328125 0.437500 0.375000 48

41 0.645985 0.673004 0.659218 263

42 0.526316 0.666667 0.588235 15

43 0.618483 0.720994 0.665816 362

Continued on next page

E.1 classification reports 85

Table E.2 – continued from previous page

Division precision recall f1-score support

45 0.774704 0.830508 0.801636 236

46 0.622739 0.600249 0.611287 803

47 0.615964 0.660743 0.637568 619

49 0.664122 0.805556 0.728033 108

50 0.545455 0.857143 0.666667 7

52 0.475410 0.630435 0.542056 46

53 0.578947 0.647059 0.611111 17

55 0.638889 0.754098 0.691729 61

56 0.658291 0.779762 0.713896 168

59 0.602740 0.586667 0.594595 75

62 0.653203 0.684672 0.668567 685

63 0.696721 0.427136 0.529595 199

64 0.266055 0.200000 0.228346 145

66 0.614035 0.729167 0.666667 96

68 0.539474 0.713043 0.614232 115

69 0.745968 0.811404 0.777311 228

70 0.646602 0.513097 0.572165 649

71 0.640553 0.507299 0.566191 274

72 0.360000 0.290323 0.321429 31

73 0.597765 0.417969 0.491954 256

74 0.771689 0.529781 0.628253 319

77 0.504854 0.440678 0.470588 118

78 0.590361 0.612500 0.601227 80

79 0.589041 0.693548 0.637037 62

80 0.571429 0.695652 0.627451 23

81 0.726496 0.752212 0.739130 113

82 0.375000 0.207921 0.267516 101

85 0.659686 0.707865 0.682927 712

86 0.758186 0.737745 0.747826 816

88 0.603774 0.531856 0.565538 361

90 0.537118 0.679558 0.600000 362

93 0.580645 0.777778 0.664908 162

94 0.644252 0.634615 0.639397 468

95 0.744186 0.385542 0.507937 83

Continued on next page

E.1 classification reports 86

Table E.2 – continued from previous page

Division precision recall f1-score support

96 0.843813 0.840404 0.842105 495

accuracy 0.640028 10023

macro avg 0.581653 0.617974 0.590105 10023

weighted avg 0.644294 0.640028 0.636859 10023

Table E.2: Hierarchical classification approach.

E.2 confusion matrices 87

e.2 confusion matrices

0.0 0.2 0.4 0.6 0.8 1.0
Predicted label

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 la
be

l

1 10253132334142434546474950525355565962636466686970717273747778798081828586889093949596

1
10
25
31
32
33
41
42
43
45
46
47
49
50
52
53
55
56
59
62
63
64
66
68
69
70
71
72
73
74
77
78
79
80
81
82
85
86
88
90
93
94
95
96

Hierarchical division classifier

1 10253132334142434546474950525355565962636466686970717273747778798081828586889093949596

1
10
25
31
32
33
41
42
43
45
46
47
49
50
52
53
55
56
59
62
63
64
66
68
69
70
71
72
73
74
77
78
79
80
81
82
85
86
88
90
93
94
95
96

'Flat' division classifier

0.0

0.2

0.4

0.6

0.8

Figure E.1: Confusion matrices for flat and hierarchical classification. On
the x-axis lists the predicted labels. The y-axis lists the true la-
bels. A high intensity diagonal (yellow) indicates a high correct
classification rate. Lower intensity (grey or blue) at the diagonal
indicate a low correct classification rate for class corresponding
to the y-coordinate. High intensity squares at other locations
than the diagonal indicate that the classifier mistakes the class
corresponding to the y-coordinate for the class corresponding to
the x-coordinate. Therefore, these figures can be used to visualize
classifier performance per class.

E.2 confusion matrices 88

0.0 0.2 0.4 0.6 0.8 1.0
Predicted label

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 la
be

l
10 25 31 32 33

10

25

31

32

33

C

41 42 43

41

42

43

F

45 46 47

45

46

47

G

49 50 52 53

49

50

52

53

H

55 56

55

56

I

59 62 63

59

62

63

J

64 66

64

66

K

69 70 71 72 73 74

69

70

71

72

73

74

M

77 78 79 80 81 82

77

78

79

80

81

82

N

86 88

86

88

Q

90 93

90

93

R

94 95 96

94

95

96

S

0.2

0.4

0.6

0.8

Figure E.2: Confusion matrices for every division classifier of the hierarchical
classifier.

B I B L I O G R A P H Y

[1] Charu C. Aggarwal and ChengXiang Zhai. “A Survey of Text
Classification Algorithms.” In: Mining Text Data. Springer, 2012,
pp. 163–222.

[2] Chid Apté, Fred Damerau, and Sholom Weiss. Text mining with
decision rules and decision trees. Citeseer, 1998.

[3] Chidanand Apté, Fred Damerau, and Sholom Weiss. “Auto-
mated Learning of Decision Rules for Text Categorization.” In:
Transactions on Information Systems 12.3 (1994), pp. 233–251.

[4] Sanjeev Arora, Yingyu Liang, and Tengyu Ma. “A Simple but
Tough-to-Beat Baseline for Sentence Embeddings.” In: (2016).
5th International Conference on Learning Representations, ICLR
2017 ; Conference date: 24-04-2017 Through 26-04-2017.

[5] Michael Ashburner, Catherine A. Ball, Judith A. Blake, David
Botstein, Heather Butler, J. Michael Cherry, Allan P. Davis, Kara
Dolinski, Selina S. Dwight, Janan T. Eppig, et al. “The Gene
Ontology Consortium Gene Ontology: Tool for the Unification
of Biology.” In: Nat Genet 25.1 (2000), pp. 25–29.

[6] L. Douglas Baker and Andrew Kachites McCallum. “Distribu-
tional Clustering of Words for Text Classification.” In: Proceedings
of the 21st Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval. 1998, pp. 96–103.

[7] A. J. Barrett. “Nomenclature Committee of the International
Union of Biochemistry and Molecular Biology (NC-IUBMB).
Enzyme Nomenclature. Recommendations 1992. Supplement
4: corrections and additions (1997).” In: European Journal of Bio-
chemistry 250.1 (1997), p. 1.

[8] Zafer Barutcuoglu and Christopher DeCoro. “Hierarchical Shape
Classification using Bayesian Aggregation.” In: IEEE International
Conference on Shape Modeling and Applications 2006 (SMI’06). IEEE.
2006, pp. 44–44.

[9] Steven Bird, Ewan Klein, and Edward Loper. Natural Language
Processing with Python: Analyzing Text with the Natural Language
Toolkit. " O’Reilly Media, Inc.", 2009.

[10] Léon Bottou. “Online Algorithms and Stochastic Approxima-
tions.” In: Online Learning and Neural Networks. Cambridge Uni-
versity Press, 1998.

[11] Léon Bottou and Olivier Bousquet. “The Tradeoffs of Large Scale
Learning.” In: Optimization for Machine Learning. MIT Press, 2012,
pp. 351–368.

89

bibliography 90

[12] Leo Breiman. “Random Forests.” In: Machine Learning 45.1 (2001),
pp. 5–32.

[13] CBS, Centraal Bureau voor de Statistiek. “Standaard Bedrijfsin-
deling 2008.” In: na (2019).

[14] Michelangelo Ceci and Donato Malerba. “Classifying Web Doc-
uments in a Hierarchy of Categories: a Comprehensive Study.”
In: Journal of Intelligent Information Systems 28.1 (2007), pp. 37–78.

[15] Nicolò Cesa-Bianchi, Claudio Gentile, and Luca Zaniboni. “Hi-
erarchical Classification: combining Bayes with SVM.” In: Pro-
ceedings of the 23rd International Conference on Machine Learning.
ACM. 2006, pp. 177–184.

[16] Soumen Chakrabarti, Byron Dom, Rakesh Agrawal, and Prab-
hakar Raghavan. “Scalable Feature Selection, Classification and
Signature Generation for organizing Large Text Databases into
Hierarchical Topic Taxonomies.” In: The VLDB Journal 7.3 (1998),
pp. 163–178.

[17] Nitesh V. Chawla, Kevin W. Bowyer, Lawrence O. Hall, and W.
Philip Kegelmeyer. “SMOTE: Synthetic Minority Over-Sampling
Technique.” In: Journal of Artificial Intelligence Research 16 (2002),
pp. 321–357.

[18] Jan Salomon Cramer. The Origins of Logistic Regression. Tech. rep.
Amsterdam: Tinbergen Institute, 2002.

[19] Cedric De Boom, Steven Van Canneyt, Thomas Demeester, and
Bart Dhoedt. “Representation Learning for very Short Texts
using Weighted Word Embedding Aggregation.” In: Pattern
Recognition Letters 80 (2016), pp. 150–156.

[20] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-
Fei. “Imagenet: A Large-Scale Hierarchical Image Database.” In:
2009 IEEE Conference on Computer Vision and Pattern Recognition.
IEEE. 2009, pp. 248–255.

[21] Ivica Dimitrovski, Dragi Kocev, Suzana Loskovska, and Sašo
Džeroski. “Hierarchical Annotation of Medical Images.” In: Pat-
tern Recognition 44.10-11 (2011), pp. 2436–2449.

[22] Pedro Domingos. “A few useful Things to Know about Machine
Learning.” In: Communications of the ACM 55.10 (2012), pp. 78–
87.

[23] Cicero Dos Santos and Maira Gatti. “Deep Convolutional Neural
Networks for Sentiment Analysis of Short Texts.” In: Proceedings
of COLING 2014, the 25th International Conference on Computational
Linguistics: Technical Papers. 2014, pp. 69–78.

[24] Susan Dumais. “Using SVMs for Text Categorization.” In: IEEE
Intelligent Systems 13.4 (1998), pp. 21–23.

bibliography 91

[25] Susan Dumais and Hao Chen. “Hierarchical Classification of
Web Content.” In: Proceedings of the 23rd Annual International
ACM SIGIR Conference on Research and Development in Information
Retrieval. ACM. 2000, pp. 256–263.

[26] Eurostat and NACE. “Rev. Statistical Classification of Economic
Activities in the European Community.” In: Office for Official
Publications of the European Communities, Luxemburg (2008).

[27] Caspar J. Fall, Atilla Törcsvári, Karim Benzineb, and Gabor
Karetka. “Automated Categorization in the International Patent
Classification.” In: SIGIR Forum 37.1 (2003), pp. 10–25.

[28] B. W. A. C. Farley and W. Clark. “Simulation of Self-Organizing
Systems by Digital Computer.” In: Transactions of the IRE Profes-
sional Group on Information Theory 4.4 (1954), pp. 76–84.

[29] Eibe Frank and Remco R. Bouckaert. “Naive Bayes for Text
Classification with Unbalanced Classes.” In: European Conference
on Principles of Data Mining and Knowledge Discovery. Springer.
2006, pp. 503–510.

[30] Alexander Genkin, David D. Lewis, and David Madigan. “Large-
Scale Bayesian Logistic Regression for Text Categorization.” In:
Technometrics 49.3 (2007), pp. 291–304.

[31] Alec Go, Richa Bhayani, and Lei Huang. “Twitter Sentiment
Classification using Distant Supervision.” In: CS224N Project
Report, Stanford 1.12 (2009).

[32] Hervé Goëau, Hervé Glotin, Willem-Pier Vellinga, Robert Plan-
qué, Andreas Rauber, and Alexis Joly. “LifeCLEF Bird Identifi-
cation Task 2014.” In: CLEF: Conference and Labs of the Evaluation
Forum. Vol. CEUR Workshop Proceedings. 1180. Sheffield, 2014,
pp. 585–597.

[33] Michael Granitzer and Peter Auer. “Experiments with hierarchi-
cal text classification.” In: Proceedings of 9th International Confer-
ence on Artifical Intelligence, ACTA Press, Benidorm, Spain, IASTED.
2005.

[34] Jun Han and Claudio Moraga. “The Influence of the Sigmoid
Function Parameters on the Speed of Backpropagation Learn-
ing.” In: International Workshop on Artificial Neural Networks.
Springer. 1995, pp. 195–201.

[35] D. O. Hebb. The Organization of Behavior: A Neuropsychological
Theory. Taylor & Francis, 1949. isbn: 9781135631901.

[36] William Hersh, Chris Buckley, T. J. Leone, and David Hickam.
“OHSUMED: an Interactive Retrieval Evaluation and New Large
Test Collection for Research.” In: SIGIR’94. Springer. 1994, pp. 192–
201.

bibliography 92

[37] Sepp Hochreiter and Jürgen Schmidhuber. “Long Short-Term
Memory.” In: Neural Computation 9.8 (1997), pp. 1735–1780.

[38] Phoenix X Huang, Bastiaan J Boom, and Robert B Fisher. “Hier-
archical Classification with Reject Option for Live Fish Recog-
nition.” In: Machine Vision and Applications 26.1 (2015), pp. 89–
102.

[39] Thorsten Joachims. Making Large-Scale SVM Learning Practi-
cal. Tech. rep. 28. Dortmund: Universität Dortmund, Sonder-
forschungsbereich 475 - Komplexitätsreduktion in Multivariaten
Datenstrukturen, 1998.

[40] Thorsten Joachims. “Text Categorization with Support Vector
Machines: Learning with many Relevant Features.” In: European
Conference on Machine Learning. Springer. 1998, pp. 137–142.

[41] Byung-soo Kim, Jae Young Park, Anna C. Gilbert, and Sil-
vio Savarese. “Hierarchical Classification of Images by Sparse
Approximation.” In: Image and Vision Computing 31.12 (2013),
pp. 982–991.

[42] Yoon Kim. “Convolutional Neural Networks for Sentence Clas-
sification.” In: arXiv preprint arXiv:1408.5882 (2014).

[43] Jyrki Kivinen, Manfred K. Warmuth, and Peter Auer. “The Per-
ceptron Algorithm versus Winnow: Linear versus Logarithmic
Mistake Bounds when few Input Variables are Relevant.” In:
Artificial Intelligence 97.1-2 (1997), pp. 325–343.

[44] Stefan Knerr, Léon Personnaz, and Gérard Dreyfus. “Single-
Layer Learning Revisited: A Stepwise Procedure for Building
and Training a Neural Network.” In: Neurocomputing: Algorithms,
Architectures and Applications. Vol. F68. Springer, 1990, pp. 41–50.

[45] Daphne Koller and Mehran Sahami. Hierarchically Classifying
Documents using very few Words. Tech. rep. Stanford: InfoLab,
1997.

[46] A. N. Kolmogorov. “Sulla Determinazione Empírica di uma
Legge di Distribuzione.” In: G. Ist. Ital. Attuari. Vol. 4. 1933,
pp. 83–91.

[47] Hans-Peter Kriegel, Peer Kröger, Alexey Pryakhin, and Matthias
Schubert. “Using Support Vector Machines for Classifying Large
Sets of Multi-Represented Objects.” In: Proceedings of the 2004
SIAM International Conference on Data Mining. SIAM. 2004, pp. 102–
113.

[48] Siwei Lai, Liheng Xu, Kang Liu, and Jun Zhao. “Recurrent Con-
volutional Neural Networks for Text Classification.” In: Proceed-
ings of the Twenty-Ninth AAAI Conference on Artificial Intelligence.
AAAI ’15. AAAI Press, 2015, pp. 2267–2273.

bibliography 93

[49] Ken Lang. “Newsweeder: Learning to Filter Netnews.” In: Pro-
ceedings of the Twelfth International Conference on Machine Learning.
1995, pp. 331–339.

[50] Leah Larkey. “Some Issues in the Automatic Classification of US
Patents.” In: Working Notes for the AAAI-98 Workshop on Learning
for Text Categorization. 1998, pp. 87–90.

[51] Wee Sun Lee and Bing Liu. “Learning with Positive and Unla-
beled Examples using Weighted Logistic Regression.” In: ICML.
Vol. 3. 2003, pp. 448–455.

[52] Thomas Martin Lehmann, Henning Schubert, Daniel Keysers,
Michael Kohnen, and Berthold B. Wein. “The IRMA Code for
Unique Classification of Medical Images.” In: Medical Imaging
2003: PACS and Integrated Medical Information Systems: Design
and Evaluation. Vol. 5033. International Society for Optics and
Photonics. 2003, pp. 440–451.

[53] Tao Li and Mitsunori Ogihara. “Music Genre Classification with
Taxonomy.” In: Proceedings.(ICASSP’05). IEEE International Con-
ference on Acoustics, Speech, and Signal Processing, 2005. Vol. 5.
IEEE. 2005, pp. v–197.

[54] Hans Peter Luhn. “A Statistical Approach to Mechanized En-
coding and Searching of Literary Information.” In: IBM Journal
of Research and Development 1.4 (1957), pp. 309–317.

[55] Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang,
Andrew Y. Ng, and Christopher Potts. “Learning Word Vec-
tors for Sentiment Analysis.” In: Proceedings of the 49th Annual
Meeting of the Association for Computational Linguistics: Human
Language Technologies. Vol. 1. Association for Computational Lin-
guistics. 2011, pp. 142–150.

[56] Charles Mathis and Thomas Breuel. “Classification using a Hier-
archical Bayesian Approach.” In: Object Recognition supported by
User Interaction for Service Robots. Vol. 4. IEEE. 2002, pp. 103–106.

[57] Warren S. McCulloch and Walter Pitts. “A Logical Calculus of
the Ideas Immanent in Nervous Activity.” In: The Bulletin of
Mathematical Biophysics 5.4 (1943), pp. 115–133.

[58] Yu Meng, Jiaming Shen, Chao Zhang, and Jiawei Han. “Weakly-
Supervised Hierarchical Text Classification.” In: Proceedings of the
AAAI Conference on Artificial Intelligence. Vol. 33. 2019, pp. 6826–
6833.

[59] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean.
“Efficient Estimation of Word Representations in Vector Space.”
In: arXiv preprint arXiv:1301.3781 (2013).

[60] Jelena Mirkovic and Peter Reiher. “A Taxonomy of DDoS Attack
and DDoS Defense Mechanisms.” In: ACM SIGCOMM Computer
Communication Review 34.2 (2004), pp. 39–53.

bibliography 94

[61] F. Pedregosa et al. “Scikit-Learn: Machine Learning in Python.”
In: Journal of Machine Learning Research 12 (2011), pp. 2825–2830.

[62] José Peña, Pedro Gutiérrez, César Hervás-Martínez, Johan Six,
Richard Plant, and Francisca López-Granados. “Object-Based
Image Classification of Summer Crops with Machine Learning
Methods.” In: Remote Sensing 6.6 (2014), pp. 5019–5041.

[63] John W. Ratcliff and David E. Metzener. “Pattern Matching: The
Gestalt Approach.” In: Dr. Dobb’s Journal 13.7 (1988), p. 46.

[64] Radim Řehůřek and Petr Sojka. “Software Framework for Topic
Modelling with Large Corpora.” English. In: Proceedings of the
LREC 2010 Workshop on New Challenges for NLP Frameworks. http:
//is.muni.cz/publication/884893/en. Valletta, Malta: ELRA,
May 2010, pp. 45–50.

[65] Herbert Robbins and Sutton Monro. “A Stochastic Approxima-
tion Method.” In: vol. 22. 3. 1951, pp. 400–407.

[66] Monica Rogati and Yiming Yang. “High-Performing Feature
Selection for Text Classification.” In: Proceedings of the Eleventh
International Conference on Information and Knowledge Management.
2002, pp. 659–661.

[67] Frank Rosenblatt. “The Perceptron: a Probabilistic Model for
Information Storage and Organization in the Brain.” In: Psycho-
logical Review 65.6 (1958), p. 386.

[68] Miguel E. Ruiz and Padmini Srinivasan. “Hierarchical Text Cat-
egorization using Neural Networks.” In: Information Retrieval 5.1
(2002), pp. 87–118.

[69] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams.
“Learning Representations by Back-Propagating Errors.” In: Cog-
nitive Modeling 5.3 (1988), p. 1.

[70] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern
Approach. Prentice-Hall, 2002.

[71] A. L. Samuel. “Some Studies in Machine Learning Using the
Game of Checkers.” In: IBM Journal of Research and Development
3.3 (1959), pp. 210–229.

[72] Or Sharir, Barak Peleg, and Yoav Shoham. “The Cost of Training
NLP Models: A Concise Overview.” In: arXiv preprint arXiv:2004.08900
(2020).

[73] Philip Shilane, Patrick Min, Michael Kazhdan, and Thomas
Funkhouser. “The Princeton Shape Benchmark.” In: Proceedings
Shape Modeling Applications, 2004. IEEE. 2004, pp. 167–178.

[74] Carlos N. Silla and Alex A. Freitas. “A Survey of Hierarchical
Classification across different Application Domains.” In: Data
Mining and Knowledge Discovery 22.1-2 (2011), pp. 31–72.

http://is.muni.cz/publication/884893/en
http://is.muni.cz/publication/884893/en

bibliography 95

[75] Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christo-
pher D. Manning, Andrew Ng, and Christopher Potts. “Recur-
sive Deep Models for Semantic Compositionality Over a Senti-
ment Treebank.” In: Proceedings of the 2013 Conference on Empirical
Methods in Natural Language Processing. Seattle: Association for
Computational Linguistics, 2013, pp. 1631–1642.

[76] Karen Sparck Jones. “A Statistical Interpretation of Term Speci-
ficity and its Application in Retrieval.” In: Journal of Documenta-
tion 28.1 (1972), pp. 11–21.

[77] V. Srividhya and R. Anitha. “Evaluating Preprocessing Tech-
niques in Text Categorization.” In: International Journal of Com-
puter Science and Application 47.11 (2010), pp. 49–51.

[78] Emma Strubell, Ananya Ganesh, and Andrew McCallum. “En-
ergy and Policy Considerations for Deep Learning in NLP.” In:
arXiv preprint arXiv:1906.02243 (2019).

[79] Aixin Sun, E. P. Lim, W. K. Ng, and Jaideep Srivastava. “Blocking
Reduction Strategies in Hierarchical Text Classification.” In:
IEEE Transactions on Knowledge and Data Engineering 16.10 (2004),
pp. 1305–1308.

[80] Xingping Sun, Yibing Li, Hongwei Kang, and Yong Shen. “Au-
tomatic Document Classification Using Convolutional Neural
Network.” In: Journal of Physics: Conference Series. Vol. 1176. 3.
IOP Publishing. 2019, p. 032029.

[81] Tatiana Tommasi, Barbara Caputo, Petra Welter, Mark Oliver
Güld, and Thomas M. Deserno. “Overview of the CLEF 2009

Medical Image Annotation Track.” In: Workshop of the Cross-
Language Evaluation Forum for European Languages. Springer. 2009,
pp. 85–93.

[82] Yuen-Hsien Tseng, Chi-Jen Lin, and Yu-I Lin. “Text Mining
Techniques for Patent Analysis.” In: Information Processing &
Management 43.5 (2007), pp. 1216–1247.

[83] Giorgio Valentini. “True Path Rule Hierarchical Ensembles for
Genome-Wide Gene Function Prediction.” In: IEEE/ACM Trans-
actions on Computational Biology and Bioinformatics (TCBB) 8.3
(2011), pp. 832–847.

[84] Cornelis Joost Van Rijsbergen. “Information Retrieval (2nd ed.)”
In: Journal of the American Society for Information Science (1979).

[85] Damir Vandic, Flavius Frasincar, and Uzay Kaymak. “A Frame-
work for Product Description Classification in E-commerce.” In:
J. Web Eng. 17.1&2 (2018), pp. 1–27.

[86] S. Vijayarani, Ms. J. Ilamathi, and Ms. Nithya. “Preprocessing
Techniques for Text Mining - An Overview.” In: International
Journal of Computer Science & Communication Networks 5.1 (2015),
pp. 7–16.

bibliography 96

[87] Maarten Wullink, Giovane C. M. Moura, and Cristian Hesselman.
“DMAP: Automating Domain Name Ecosystem Measurements
and Applications.” In: IFIP/IEEE Network Traffic Measurement and
Analysis Conference (TMA 2018). Vienna, Austria, June 2018.

[88] Zhongzhe Xiao, Emmanuel Dellandrea, Weibei Dou, and Liming
Chen. “Hierarchical Classification of Emotional Speech.” In:
IEEE Transactions on Multimedia 37 (2007).

[89] Gui-Rong Xue, Dikan Xing, Qiang Yang, and Yong Yu. “Deep
Classification in Large-Scale Text Hierarchies.” In: Proceedings of
the 31st Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval. SIGIR ’08. Association
for Computing Machinery, 2008, pp. 619–626.

[90] Alec Yenter and Abhishek Verma. “Deep CNN-LSTM with Com-
bined Kernels from Multiple Branches for IMDb Review Sen-
timent Analysis.” In: 2017 IEEE 8th Annual Ubiquitous Comput-
ing, Electronics and Mobile Communication Conference (UEMCON).
IEEE. 2017, pp. 540–546.

[91] Yongwook Yoon, Changki Lee, and Gary Geunbae Lee. “An
Effective Procedure for constructing a Hierarchical Text Classifi-
cation System.” In: Journal of the American Society for Information
Science and Technology 57.3 (2006), pp. 431–442.

[92] Seongwook Youn and Dennis McLeod. “A Comparative Study
for Email Classification.” In: Advances and Innovations in Sys-
tems, Computing Sciences and Software Engineering. Springer, 2007,
pp. 387–391.

[93] ChengXiang Zhai and Sean Massung. Text Data Management and
Analysis: A Practical Introduction to Information Retrieval and Text
Mining. Morgan & Claypool, 2016.

[94] G. K. Zipf. The Psycho-Biology of Language: An Introduction to
Dynamic Philology. Cognitive Psychology v. 21. Written in 1935.
Routledge, 1999. isbn: 9780415209762.

	Abstract
	Acknowledgments
	Contents
	 The Introduction
	1 Introduction
	2 Pilot experiments

	 The Experiments
	3 Traditional Economic Activity Classification
	4 Improving Classification Performance by Exploiting the Hierarchical Structure
	5 Deployment

	 The Discussion
	6 Conclusion
	7 Discussion

	 Appendix
	A Text Classification Applications
	B Pilot experiments
	C Feature Types and Classifier Performance
	D Performance of the Classifiers
	E ``Flat'' Versus Hierarchical Classification
	 Bibliography

